Ex 6.3,10 - Chapter 6 Class 12 Application of Derivatives
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 6.3, 10 Find the maximum value of 2đĽ3 â 24đĽ + 107 in the interval [1, 3]. Find the maximum value of the same function in [â3, â1]. Let f(đĽ)=2đĽ^3â24đĽ+107 Finding fâ(đĽ) fâ(đĽ)=đ(2đĽ^3 â 24đĽ + 107)/đđĽ = 2 Ă 3đĽ^2â24 = 6đĽ^2â24 = 6 (đĽ^2â4" " ) Putting f(đĽ)=0 6 (đĽ^2â4" " )=0 đĽ^2â4" = 0 " đĽ^2=4 đĽ=Âąâ4 đĽ=Âą2 Thus, đĽ=2 , â 2 Since x is in interval [1 , 3] đĽ = 2 is only Critical point Also, since given the interval đĽ= â [1 , 3] We calculate f(x) at đĽ= 1 , 2 & 3 Hence maximum value of f(đ)=đđ at đ = 3 in the interval [1 , 3] For the interval [âđ , âđ] đĽ = â2 is only Critical Point Also, since given the interval đĽ= â [â3,â1] We calculate f(x) at đĽ= â1 , â2 & â3 Hence maximum value of f(đ)=đđđ at đ = â2 in the interval [â3,â1]
Ex 6.3
Ex 6.3, 1 (ii)
Ex 6.3, 1 (iii) Important
Ex 6.3, 1 (iv)
Ex 6.3, 2 (i)
Ex 6.3, 2 (ii) Important
Ex 6.3, 2 (iii)
Ex 6.3, 2 (iv) Important
Ex 6.3, 2 (v) Important
Ex 6.3, 3 (i)
Ex 6.3, 3 (ii)
Ex 6.3, 3 (iii)
Ex 6.3, 3 (iv) Important
Ex 6.3, 3 (v)
Ex 6.3, 3 (vi)
Ex 6.3, 3 (vii) Important
Ex 6.3, 3 (viii)
Ex 6.3, 4 (i)
Ex 6.3, 4 (ii) Important
Ex 6.3, 4 (iii)
Ex 6.3, 5 (i)
Ex 6.3, 5 (ii)
Ex 6.3, 5 (iii) Important
Ex 6.3, 5 (iv)
Ex 6.3,6
Ex 6.3,7 Important
Ex 6.3,8
Ex 6.3,9 Important
Ex 6.3,10 You are here
Ex 6.3,11 Important
Ex 6.3,12 Important
Ex 6.3,13
Ex 6.3,14 Important
Ex 6.3,15 Important
Ex 6.3,16
Ex 6.3,17
Ex 6.3,18 Important
Ex 6.3,19 Important
Ex 6.3, 20 Important
Ex 6.3,21
Ex 6.3,22 Important
Ex 6.3,23 Important
Ex 6.3,24 Important
Ex 6.3,25 Important
Ex 6.3, 26 Important
Ex 6.3, 27 (MCQ)
Ex 6.3,28 (MCQ) Important
Ex 6.3,29 (MCQ)
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo