Ex 6.3, 3 (viii) - Chapter 6 Class 12 Application of Derivatives
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 6.3, 3 Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be: (viii) f(𝑥) = 𝑥√(1−𝑥), 𝑥 > 0= √(1−𝑥) + 1/(2√(1 − 𝑥)) (0 −1) . 𝑥 = √(1−𝑥) – 𝑥/(2√(1 − 𝑥)) = (2(√(1 − 𝑥) )^2− 𝑥)/(2√(1 − 𝑥)) = (2(1 − 𝑥) − 𝑥)/(2√(1 − 𝑥)) = (2 − 2𝑥 − 𝑥)/(2√(1 − 𝑥)) = (2 − 3𝑥)/(2√(1 − 𝑥)) Putting f’(𝒙)=𝟎 (2 − 3𝑥)/(2√(1 − 𝑥))=0 2 – 3𝑥 = 0 × 2√(1−𝑥) 2 – 3𝑥=0 – 3𝑥=−2 𝑥 =2/3 Finding f’’(𝒙) f’(𝑥)=(2 − 3𝑥)/(2√(1 − 𝑥)) f’’(𝑥)=𝑑/𝑑𝑥 ((2 − 3𝑥)/(2√(1 − 𝑥))) = 1/2 [(𝑑(2 − 3𝑥)/𝑑𝑥 . √(1 − 𝑥) − 𝑑(√(1 − 𝑥))/𝑑𝑥 . (2 − 3𝑥))/(√(1 − 𝑥))^2 ] = 1/2 [((0 − 3) √(1 − 𝑥) − 1/(2√(1 − 𝑥)) . 𝑑(1 − 𝑥)/𝑑𝑥 . (2 − 3𝑥))/((1 − 𝑥) )] = 1/2 [(−3√(1 − 𝑥) − 1/(2√(1 − 𝑥)) (0 − 1) . (2 − 3𝑥))/((1 − 𝑥) )] = 1/2 [(−3√(1 − 𝑥) + (2 − 3𝑥)/(2√(1 − 𝑥)) )/(1 − 𝑥)] = 1/2 [((−3√(1 − 𝑥)) (2√(1 − 𝑥)) + 2 − 3𝑥 )/(2(1 − 𝑥) √(1 − 𝑥))] = 1/2 [(−6(1 − 𝑥) + 2 − 3𝑥 )/(2(1 − 𝑥) √(1 − 𝑥))] = 1/2 [(−6 + 6𝑥 + 2 − 3𝑥 )/(2(1 − 𝑥) √(1 − 𝑥))] = 1/4 [(−4 + 3𝑥 )/(1 + 𝑥)^(3/2) ] Hence, f’’(𝑥)=1/4 [(−4 + 3𝑥 )/(1 + 𝑥)^(3/2) ] Putting 𝑥=2/3 f’’(2/3)=1/4 [(−4 + 3(2/3))/(1 + 2/3)^(3/2) ] =1/4 [(−4 + 2)/(5/3)^(3/2) ] =1/4 [(−2)/(5/3)^(3/2) ] = (− 1)/2 (3/5)^(3/2) < 0 Since f’’(𝑥)<0 when 𝑥 = 2/3 Hence, 𝑥=2/3 is the maxima Finding Maximum value of f(𝒙)=𝒙√(𝟏−𝒙) Putting 𝑥=2/3 f(2/3)=2/3 √(1−2/3) =2/3 √((3 − 2)/3) Finding Maximum value of f(𝒙)=𝒙√(𝟏−𝒙) Putting 𝑥=2/3 f(𝑥) = 𝑥√(1−𝑥) f(2/3)=2/3 √(1−2/3) =2/3 √((3 − 2)/3) =2/3 √(1/3) =2/(3√3) =2/(3√3) × √3/√3 =(2√3)/9 Maximum value of f(𝒙) is (𝟐√𝟑)/𝟗 at x = 𝟐/𝟑
Ex 6.3
Ex 6.3, 1 (ii)
Ex 6.3, 1 (iii) Important
Ex 6.3, 1 (iv)
Ex 6.3, 2 (i)
Ex 6.3, 2 (ii) Important
Ex 6.3, 2 (iii)
Ex 6.3, 2 (iv) Important
Ex 6.3, 2 (v) Important
Ex 6.3, 3 (i)
Ex 6.3, 3 (ii)
Ex 6.3, 3 (iii)
Ex 6.3, 3 (iv) Important
Ex 6.3, 3 (v)
Ex 6.3, 3 (vi)
Ex 6.3, 3 (vii) Important
Ex 6.3, 3 (viii) You are here
Ex 6.3, 4 (i)
Ex 6.3, 4 (ii) Important
Ex 6.3, 4 (iii)
Ex 6.3, 5 (i)
Ex 6.3, 5 (ii)
Ex 6.3, 5 (iii) Important
Ex 6.3, 5 (iv)
Ex 6.3,6
Ex 6.3,7 Important
Ex 6.3,8
Ex 6.3,9 Important
Ex 6.3,10
Ex 6.3,11 Important
Ex 6.3,12 Important
Ex 6.3,13
Ex 6.3,14 Important
Ex 6.3,15 Important
Ex 6.3,16
Ex 6.3,17
Ex 6.3,18 Important
Ex 6.3,19 Important
Ex 6.3, 20 Important
Ex 6.3,21
Ex 6.3,22 Important
Ex 6.3,23 Important
Ex 6.3,24 Important
Ex 6.3,25 Important
Ex 6.3, 26 Important
Ex 6.3, 27 (MCQ)
Ex 6.3,28 (MCQ) Important
Ex 6.3,29 (MCQ)
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo