Ex 6.3, 3 (vii) - Chapter 6 Class 12 Application of Derivatives
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 6.3, 3 Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be: (vii) g (š„) = 1/(š„^2 + 2)Finding gā(š) gā(š„)=š/šš„ (1/(š„^2 + 2)) gā(š„)=(š(š„^2 + 2)^(ā1))/šš„ gā(š„)=ā1(š„^2+2)^(ā1ā1) Ć (2š„+0) gā(š„)=ā2š„(š„^2+2)^(ā2) gā²(š„)=( ā2š„ )/(š„^2 + 2)^2 Putting gā(š)=š ( ā2š„ )/(š„^2+2)^2 =0 ā2š„=0 Ć(š„^2+2)^2 ā2š„=0 š„=0 Finding gāā(š) gā(š„)=(ā2š„)/(š„^2 + 2)^2 gāā(š„)=(š(ā2š„)/šš„ . ć (š„^2 + 2)ć^2 ā (š(š„^2 + 2)^2)/šš„ . (ā2š„))/((š„^2 + 2)^2 )^2 =(ā2 (š„^2 + 2)^2ā2 (š„^2 + 2)^(2ā1).š(š„^2 + 2)/šš„ . (ā2š„))/((š„^2 + 2)^2 )^2 =(ā2 (š„^2 + 2)^2ā2 (š„^2 + 2)(2š„ + 0) (ā2š„))/(š„^2 + 2)^4 =(ā2 (š„^2 + 2)^2ā2 (š„^2 + 2)(2š„) (ā2š„))/(š„^(2 )+ 2)^4 =(ā2 (š„^2 + 2)^2+ 8š„^2 (š„^2 + 2))/(š„^(2 )+ 2)^4 =(ā2 (š„^2 + 2)[(š„^(2 )+ 2) ā 4š„^2 ])/(š„^2 + 2)^4 =(ā2 (š„^2 + 2)(ā3š„^2 + 2))/(š„^2 + 2)^4 =(ā2(ā3š„^2 + 2))/(š„^(2 )+ 2)^3 Putting x = 0 in gāā(x) gāā(0)=(ā2(ā3(0) + 2))/(0^2 + 2)^3 =(ā2(0 + 2))/(2)^3 =(ā4)/8=(ā1)/2 Hence gāā(š„)<0 when š„ = 0 ā“ š„ = 0 is point of local maxima Thus, g(š„) is maximum at š = 0 Maximum value of g(š) at x = 0 g(š„)=1/(š„^(2 )+ 2) g(0)=1/(0^2 + 2) = 1/2 Maximum value is š/š
Ex 6.3
Ex 6.3, 1 (ii)
Ex 6.3, 1 (iii) Important
Ex 6.3, 1 (iv)
Ex 6.3, 2 (i)
Ex 6.3, 2 (ii) Important
Ex 6.3, 2 (iii)
Ex 6.3, 2 (iv) Important
Ex 6.3, 2 (v) Important
Ex 6.3, 3 (i)
Ex 6.3, 3 (ii)
Ex 6.3, 3 (iii)
Ex 6.3, 3 (iv) Important
Ex 6.3, 3 (v)
Ex 6.3, 3 (vi)
Ex 6.3, 3 (vii) Important You are here
Ex 6.3, 3 (viii)
Ex 6.3, 4 (i)
Ex 6.3, 4 (ii) Important
Ex 6.3, 4 (iii)
Ex 6.3, 5 (i)
Ex 6.3, 5 (ii)
Ex 6.3, 5 (iii) Important
Ex 6.3, 5 (iv)
Ex 6.3,6
Ex 6.3,7 Important
Ex 6.3,8
Ex 6.3,9 Important
Ex 6.3,10
Ex 6.3,11 Important
Ex 6.3,12 Important
Ex 6.3,13
Ex 6.3,14 Important
Ex 6.3,15 Important
Ex 6.3,16
Ex 6.3,17
Ex 6.3,18 Important
Ex 6.3,19 Important
Ex 6.3, 20 Important
Ex 6.3,21
Ex 6.3,22 Important
Ex 6.3,23 Important
Ex 6.3,24 Important
Ex 6.3,25 Important
Ex 6.3, 26 Important
Ex 6.3, 27 (MCQ)
Ex 6.3,28 (MCQ) Important
Ex 6.3,29 (MCQ)
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo