Check sibling questions

     


Transcript

Ex 6.3, 3 Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be: (iv) f (𝑥)=sin⁡𝑥 –cos⁡𝑥, 0<𝑥<2 𝜋f (𝑥)=sin⁡𝑥 –cos⁡𝑥, 0<𝑥<2 𝜋 Finding f’(𝒙) f’(𝑥)=cos⁡𝑥−(−sin⁡𝑥 ) f’(𝑥)=cos⁡𝑥+sin⁡𝑥 Putting f’(𝒙)=𝟎 cos⁡𝑥+sin⁡𝑥 = 0 cos⁡𝑥=−sin⁡𝑥 1=(−sin⁡𝑥)/cos⁡𝑥 (−sin⁡𝑥)/cos⁡𝑥 =1 – tan 𝑥=1 tan 𝑥=−1 Since 0 < 𝑥 < 2π & tan 𝑥 is negative tan θ lies in either 2nd or 4th quadrant So, value of 𝑥 is 𝑥=3𝜋/4 𝑜𝑟 7𝜋/4 Now finding f’’(𝑥) f’’(𝑥)=𝑑(cos⁡𝑥 + sin⁡𝑥 )/𝑑𝑥 f’’(𝑥)=−sin⁡𝑥+cos⁡𝑥 Putting 𝒙 = 𝟑𝝅/𝟒 f’’(3𝜋/4)=−𝑠𝑖𝑛(3𝜋/4)+𝑐𝑜𝑠(3𝜋/4) =−𝑠𝑖𝑛(𝜋−𝜋/4)+𝑐𝑜𝑠(𝜋− 𝜋/4) =−𝑠𝑖𝑛(𝜋/4)+(−𝑐𝑜𝑠 𝜋/4) =(−1)/√2−1/√2 =(−2)/√2 =−√2 < 0 Hence f’’(𝑥)<0 when 𝑥 = 3𝜋/4 Thus 𝑥 = 3𝜋/4 is point of local maxima ∴ f(𝑥) is maximum value at 𝑥 = 3𝜋/4 The local maximum value is f(𝑥)=sin⁡𝑥−cos⁡𝑥 f(3𝜋/4)=𝑠𝑖𝑛(3𝜋/4)−𝑐𝑜𝑠(3𝜋/4) =𝑠𝑖𝑛(𝜋−𝜋/4)−𝑐𝑜𝑠(𝜋−𝜋/4) =𝑠𝑖𝑛(𝜋/4)−(−𝑐𝑜𝑠 𝜋/4) =𝑠𝑖𝑛 𝜋/4+𝑐𝑜𝑠 𝜋/4 =1/√2+1/√2 =2/√2 =√2 Now, for 𝒙 = 𝟕𝝅/𝟒 f’’(𝑥)=−sin⁡𝑥+cos⁡𝑥 Putting 𝑥 = 7𝜋/4 f’’(7𝜋/4)=−sin⁡(7𝜋/4)+cos⁡(7𝜋/4) f’’(7𝜋/4)=−𝑠𝑖𝑛(2𝜋−𝜋/4)+𝑐𝑜𝑠(2𝜋−𝜋/4) =−(−𝑠𝑖𝑛(𝜋/4))+𝑐𝑜𝑠(𝜋/4) =𝑠𝑖𝑛 𝜋/4+𝑐𝑜𝑠 𝜋/4 =1/√2 + 1/√2 =2/√2 =√2 > 0 f’’(𝑥)>0 when 𝑥 = 7𝜋/4 Thus 𝑥 = 7𝜋/4 is point of local minima f(𝑥) has minimum value at 𝑥 = 7𝜋/4 Local minimum value is f(𝑥)=𝑠𝑖𝑛𝑥−𝑐𝑜𝑠𝑥 f(7𝜋/4)=𝑠𝑖𝑛(7𝜋/4)−𝑐𝑜𝑠(7𝜋/4) =𝑠𝑖𝑛(2𝜋−𝜋/4)−𝑐𝑜𝑠(2𝜋−𝜋/4) =−𝑠𝑖𝑛(𝜋/4)−𝑐𝑜𝑠(𝜋/4) =(−1)/√2 − 1/√2 =(−2)/√2 =−√2 Thus, f(𝑥) is maximum at x = 𝟑𝝅/𝟒 and maximum value is √𝟐 & f(𝑥) is minimum at x = 𝟕𝝅/𝟒 and maximum value is –√𝟐

  1. Chapter 6 Class 12 Application of Derivatives
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo