Ex 7.8, 20 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.8
Ex 7.8, 2
Ex 7.8, 3
Ex 7.8, 4 Important
Ex 7.8, 5
Ex 7.8, 6
Ex 7.8, 7
Ex 7.8, 8 Important
Ex 7.8, 9
Ex 7.8, 10
Ex 7.8, 11 Important
Ex 7.8, 12
Ex 7.8, 13
Ex 7.8, 14 Important
Ex 7.8, 15
Ex 7.8, 16 Important
Ex 7.8, 17 Important
Ex 7.8, 18
Ex 7.8, 19 Important
Ex 7.8, 20 Important You are here
Ex 7.8, 21 (MCQ) Important
Ex 7.8, 22 (MCQ)
Last updated at April 16, 2024 by Teachoo
Ex 7.8, 20 β«_0^1β(π₯ π^π₯+sinβ‘γππ₯/4γ ) ππ₯ Let F(π₯)=β«1β(π₯π^π₯+π ππ ππ₯/4)ππ₯ =β«1βγπ₯π^π₯ ππ₯+β«1βγsinβ‘(ππ₯/4) ππ₯γγ Solving I1 and I2 separately Solving π°π β«1βγπ₯π^π₯ ππ₯γ =π₯β«1βγπ^π₯ ππ₯ββ«1β[(ππ₯/ππ₯) β«1βγπ^π₯ ππ₯γ]ππ₯γ =π₯π^π₯ββ«1β(1.π^π₯ ππ₯)ππ₯ =π₯π^π₯ββ«1βγπ^π₯ ππ₯γ =π₯π^π₯βπ^π₯ =π^π₯ (π₯β1) Solving I2 β«1βγsinβ‘(ππ₯/4) ππ₯γ = 1/(π/4) (βcosβ‘(ππ₯/4) ) = (β4)/π cosβ‘(ππ₯/4) Therefore, F(π₯)=β«1βγπ₯π^π₯ ππ₯+β«1βγπ ππ π/4 π₯ ππ₯γγ =π^π₯ (π₯β1)β4/π cosβ‘(ππ₯/4) Now, β«_0^1β(π₯π^π₯+π ππ ππ₯/4) ππ₯=πΉ(1)βπΉ(0) =(π^1 (1β1)β4/π cosβ‘((π Γ 1)/4) )β(π^0 (0β1)+4/π πππ ((π Γ 0)/4)) =πΓ0β4/π πππ π/4β1(β1)+4/π cosβ‘0 =(β4)/( π) πππ π/4+1+4/π =(β4)/( π) 1/β2+1+4/π =(β2β2)/( π) +1+4/π =π+π/π β(πβπ)/π