Slide30.JPG

Slide31.JPG
Slide32.JPG
Slide33.JPG

Go Ad-free

Transcript

Ex 7.8, 14 ∫_0^1▒(2𝑥 + 3)/(5𝑥2 + 1) dx Let F(𝒙)=∫1▒(2𝑥 + 3)/(5𝑥^2 + 1) 𝑑𝑥 =∫1▒2𝑥/(5𝑥^2 + 1) 𝑑𝑥+∫1▒3/(5𝑥^2 + 1) 𝑑𝑥 Solving ∫1▒𝟐𝒙/(𝟓𝒙^𝟐 + 𝟏) 𝒅𝒙 Put 𝑥^2=𝑡 Differentiating w.r.t.𝑥 2𝑥=𝑑𝑡/𝑑𝑥 𝑑𝑥=𝑑𝑡/2𝑥 Hence ∫1▒〖(2𝑥 )/(5𝑥^2 + 1) 𝑑𝑥=∫1▒〖2𝑥/(5𝑡+1) 𝑑𝑡/2𝑥〗〗 =∫1▒𝑑𝑡/(5𝑡+1) =1/5 𝑙𝑜𝑔|5𝑡+1| =𝟏/𝟓 𝒍𝒐𝒈|𝟓𝒙^𝟐+𝟏| Integrating ∫1▒〖𝟑/(𝟓𝒙^𝟐+𝟏) 𝒅𝒙〗 ∫1▒〖3/(5𝑥^2+1) 𝑑𝑥〗 =3∫1▒𝑑𝑥/(5𝑥^2+1) =3/5 ∫1▒𝑑𝑥/(𝑥^2 + 1/5) =3/5 ∫1▒𝑑𝑥/(𝑥^2 +(1/√5)^2 ) =3/5×(1/1)/√5 tan^(−1) ((𝑥/1)/√5) =3/5×√5 〖𝑡𝑎𝑛〗^(−1) (√5 𝑥) =𝟑/𝟓 〖𝒕𝒂𝒏〗^(−𝟏) (√𝟓 𝒙) Hence, F(𝒙)=∫1▒2𝑥/(5𝑥^2 + 1) 𝑑𝑥+∫1▒3/(5𝑥^2 + 1) 𝑑𝑥 =𝟏/𝟓 𝒍𝒐𝒈|𝟓𝒙^𝟐+𝟏|+𝟑/√𝟓 〖𝒕𝒂𝒏〗^(−𝟏) (√𝟓 𝒙) Now, ∫_0^1▒〖(2𝑥 + 3)/(〖5𝑥〗^2+ 1) 𝑑x=𝐅(𝟏)−𝐅(𝟎)〗 =1/5 𝑙𝑜𝑔|5〖×1〗^2+1|+3/√5 〖𝑡𝑎𝑛〗^(−1) (√5 𝑥) −[1/5 𝑙𝑜𝑔|5×0+1|+3/√5 〖𝑡𝑎𝑛〗^(−1) (√5×0)] =1/5 |6|+3/√5 〖𝑡𝑎𝑛〗^(−1) √5−1/5 𝑙𝑜𝑔1+3/5 〖𝑡𝑎𝑛〗^(−1) 0 =1/5 𝑙𝑜𝑔 6+3/√5 〖𝑡𝑎𝑛〗^(−1) √5−1/5×0+3/5×0 =𝟏/𝟓 𝒍𝒐𝒈 𝟔+𝟑/√𝟓 〖𝒕𝒂𝒏〗^(−𝟏) √𝟓

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo