Ex 7.8, 14 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.8
Ex 7.8, 2
Ex 7.8, 3
Ex 7.8, 4 Important
Ex 7.8, 5
Ex 7.8, 6
Ex 7.8, 7
Ex 7.8, 8 Important
Ex 7.8, 9
Ex 7.8, 10
Ex 7.8, 11 Important
Ex 7.8, 12
Ex 7.8, 13
Ex 7.8, 14 Important You are here
Ex 7.8, 15
Ex 7.8, 16 Important
Ex 7.8, 17 Important
Ex 7.8, 18
Ex 7.8, 19 Important
Ex 7.8, 20 Important
Ex 7.8, 21 (MCQ) Important
Ex 7.8, 22 (MCQ)
Last updated at April 16, 2024 by Teachoo
Ex 7.8, 14 ∫_0^1▒(2𝑥 + 3)/(5𝑥2 + 1) dx Let F(𝒙)=∫1▒(2𝑥 + 3)/(5𝑥^2 + 1) 𝑑𝑥 =∫1▒2𝑥/(5𝑥^2 + 1) 𝑑𝑥+∫1▒3/(5𝑥^2 + 1) 𝑑𝑥 Solving ∫1▒𝟐𝒙/(𝟓𝒙^𝟐 + 𝟏) 𝒅𝒙 Put 𝑥^2=𝑡 Differentiating w.r.t.𝑥 2𝑥=𝑑𝑡/𝑑𝑥 𝑑𝑥=𝑑𝑡/2𝑥 Hence ∫1▒〖(2𝑥 )/(5𝑥^2 + 1) 𝑑𝑥=∫1▒〖2𝑥/(5𝑡+1) 𝑑𝑡/2𝑥〗〗 =∫1▒𝑑𝑡/(5𝑡+1) =1/5 𝑙𝑜𝑔|5𝑡+1| =𝟏/𝟓 𝒍𝒐𝒈|𝟓𝒙^𝟐+𝟏| Integrating ∫1▒〖𝟑/(𝟓𝒙^𝟐+𝟏) 𝒅𝒙〗 ∫1▒〖3/(5𝑥^2+1) 𝑑𝑥〗 =3∫1▒𝑑𝑥/(5𝑥^2+1) =3/5 ∫1▒𝑑𝑥/(𝑥^2 + 1/5) =3/5 ∫1▒𝑑𝑥/(𝑥^2 +(1/√5)^2 ) =3/5×(1/1)/√5 tan^(−1) ((𝑥/1)/√5) =3/5×√5 〖𝑡𝑎𝑛〗^(−1) (√5 𝑥) =𝟑/𝟓 〖𝒕𝒂𝒏〗^(−𝟏) (√𝟓 𝒙) Hence, F(𝒙)=∫1▒2𝑥/(5𝑥^2 + 1) 𝑑𝑥+∫1▒3/(5𝑥^2 + 1) 𝑑𝑥 =𝟏/𝟓 𝒍𝒐𝒈|𝟓𝒙^𝟐+𝟏|+𝟑/√𝟓 〖𝒕𝒂𝒏〗^(−𝟏) (√𝟓 𝒙) Now, ∫_0^1▒〖(2𝑥 + 3)/(〖5𝑥〗^2+ 1) 𝑑x=𝐅(𝟏)−𝐅(𝟎)〗 =1/5 𝑙𝑜𝑔|5〖×1〗^2+1|+3/√5 〖𝑡𝑎𝑛〗^(−1) (√5 𝑥) −[1/5 𝑙𝑜𝑔|5×0+1|+3/√5 〖𝑡𝑎𝑛〗^(−1) (√5×0)] =1/5 |6|+3/√5 〖𝑡𝑎𝑛〗^(−1) √5−1/5 𝑙𝑜𝑔1+3/5 〖𝑡𝑎𝑛〗^(−1) 0 =1/5 𝑙𝑜𝑔 6+3/√5 〖𝑡𝑎𝑛〗^(−1) √5−1/5×0+3/5×0 =𝟏/𝟓 𝒍𝒐𝒈 𝟔+𝟑/√𝟓 〖𝒕𝒂𝒏〗^(−𝟏) √𝟓