Slide19.JPG

Slide20.JPG

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

Transcript

Ex 7.9, 10 ∫_0^1▒𝑑π‘₯/(1 + π‘₯2) Let F(π‘₯)=∫1▒𝑑π‘₯/(1 + π‘₯^2 ) =∫1β–’1/(1^2 + π‘₯^2 ) 𝑑π‘₯ =1/1 .tan^(βˆ’1)⁑(π‘₯/1) =tan^(βˆ’1) π‘₯ Hence F(π‘₯)=tan^(βˆ’1) π‘₯ (Using ∫1β–’1/(π‘₯^2 + π‘Ž^2 ) 𝑑π‘₯=1/π‘Ž tan^(βˆ’1)⁑π‘₯) Now, ∫_0^1▒〖𝑑π‘₯/(1 + π‘₯^2 )=𝐹(1)βˆ’πΉ(0) γ€— =tan^(βˆ’1)⁑〖(1)βˆ’tan^(βˆ’1)⁑(0) γ€— =πœ‹/4βˆ’0 =𝝅/πŸ’

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.