Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

Ex 7.8

Ex 7.8, 1

Ex 7.8, 2

Ex 7.8, 3

Ex 7.8, 4 Important

Ex 7.8, 5

Ex 7.8, 6

Ex 7.8, 7

Ex 7.8, 8 Important

Ex 7.8, 9

Ex 7.8, 10

Ex 7.8, 11 Important

Ex 7.8, 12

Ex 7.8, 13

Ex 7.8, 14 Important

Ex 7.8, 15

Ex 7.8, 16 Important

Ex 7.8, 17 Important

Ex 7.8, 18

Ex 7.8, 19 Important You are here

Ex 7.8, 20 Important

Ex 7.8, 21 (MCQ) Important

Ex 7.8, 22 (MCQ)

Last updated at June 13, 2023 by Teachoo

Ex 7.8, 19 ∫_0^2▒(6𝑥 + 3)/(𝑥^2 + 4) 𝑑𝑥 Let F(𝑥)=∫1▒〖(6𝑥 + 3)/(𝑥^2 + 4) 𝑑𝑥〗 =∫1▒〖6𝑥/(𝑥^2 + 4) 𝑑𝑥+∫1▒〖3/(𝑥^2 + 4) 𝑑𝑥 〗〗 Solving 𝑰𝟏 𝐼1=∫1▒〖6𝑥/(𝑥^2 + 4) 𝑑𝑥〗 Put 𝑥^2 + 4=𝑡 Differentiating w.r.t.𝑥 𝑑/𝑑𝑥 (𝑥^2+4)=𝑑𝑡/𝑑𝑥 2𝑥+0=𝑑𝑡/𝑑𝑥 𝑑𝑥=𝑑𝑡/2𝑥 Therefore, ∫1▒〖6𝑥/(𝑥^2 + 4) 𝑑𝑥=∫1▒〖6𝑥/𝑡 𝑑𝑡/2𝑥〗〗 =∫1▒〖3/𝑡 𝑑𝑡〗 =3 𝑙𝑜𝑔|𝑡| =3 𝑙𝑜𝑔|𝑥^2+4| Solving 𝑰𝟐 𝐼2=∫1▒〖3/(𝑥^2 + 4) 𝑑𝑥〗 =3∫1▒1/(𝑥^2+4) 𝑑𝑥 =3∫1▒1/(𝑥^2 + 2^2 ) 𝑑𝑥 =3 × 1/2 tan^(−1)〖𝑥/2〗 =3/2 tan^(−1)〖𝑥/2〗 Therefore F(𝑥)= 𝐼1+𝐼2 F(𝑥)=3𝑙𝑜𝑔|𝑥^2+4|+3/2 tan^(−1)〖𝑥/2〗 Now, ∫_0^2▒〖(6𝑥 + 3)/(𝑥^2 + 4) 𝑑𝑥=𝐹(2)−𝐹(0) 〗 =3𝑙𝑜𝑔|2^2+4|+3/2 tan^(−1)〖2/2−3𝑙𝑜𝑔|0+4|−3/2 tan^(−1)(0/2) 〗 =3𝑙𝑜𝑔|4+4|+3/2 tan^(−1)〖1−3𝑙𝑜𝑔|4|−3/2 × 0〗 =3𝑙𝑜𝑔|8|−3𝑙𝑜𝑔|4|+3/2 𝜋/4 =3(𝑙𝑜𝑔|8|−𝑙𝑜𝑔|4|)+3𝜋/8 =3𝑙𝑜𝑔|8/4|+3𝜋/8 =𝟑 𝐥𝐨𝐠〖𝟐+𝟑𝝅/𝟖〗