


Get live Maths 1-on-1 Classs - Class 6 to 12
Ex 7.9
Ex 7.9, 2
Ex 7.9, 3
Ex 7.9, 4 Important
Ex 7.9, 5
Ex 7.9, 6
Ex 7.9, 7
Ex 7.9, 8 Important
Ex 7.9, 9
Ex 7.9, 10
Ex 7.9, 11 Important
Ex 7.9, 12
Ex 7.9, 13
Ex 7.9, 14 Important
Ex 7.9, 15
Ex 7.9, 16 Important
Ex 7.9, 17 Important
Ex 7.9, 18
Ex 7.9, 19 Important You are here
Ex 7.9, 20 Important
Ex 7.9, 21 (MCQ) Important
Ex 7.9, 22 (MCQ)
Last updated at March 16, 2023 by Teachoo
Ex 7.9, 19 ∫_0^2▒(6𝑥 + 3)/(𝑥^2 + 4) 𝑑𝑥 Let F(𝑥)=∫1▒〖(6𝑥 + 3)/(𝑥^2 + 4) 𝑑𝑥〗 =∫1▒〖6𝑥/(𝑥^2 + 4) 𝑑𝑥+∫1▒〖3/(𝑥^2 + 4) 𝑑𝑥 〗〗 Solving 𝑰𝟏 𝐼1=∫1▒〖6𝑥/(𝑥^2 + 4) 𝑑𝑥〗 Put 𝑥^2 + 4=𝑡 Differentiating w.r.t.𝑥 𝑑/𝑑𝑥 (𝑥^2+4)=𝑑𝑡/𝑑𝑥 2𝑥+0=𝑑𝑡/𝑑𝑥 𝑑𝑥=𝑑𝑡/2𝑥 Therefore, ∫1▒〖6𝑥/(𝑥^2 + 4) 𝑑𝑥=∫1▒〖6𝑥/𝑡 𝑑𝑡/2𝑥〗〗 =∫1▒〖3/𝑡 𝑑𝑡〗 =3 𝑙𝑜𝑔|𝑡| =3 𝑙𝑜𝑔|𝑥^2+4| (∵𝑡=𝑥^2+4) Solving 𝑰𝟐 𝐼2=∫1▒〖3/(𝑥^2 + 4) 𝑑𝑥〗 =3∫1▒1/(𝑥^2+4) 𝑑𝑥 =3∫1▒1/(𝑥^2 + 2^2 ) 𝑑𝑥 =3 × 1/2 tan^(−1)〖𝑥/2〗 =3/2 tan^(−1)〖𝑥/2〗 Therefore F(𝑥)= 𝐼1+𝐼2 F(𝑥)=3𝑙𝑜𝑔|𝑥^2+4|+3/2 tan^(−1)〖𝑥/2〗 ( As ∫1▒〖𝑑𝑥/(𝑥^2 + 𝑎^2 )=1/𝑎 tan^(−1)〖𝑥/𝑎〗 〗) Now, ∫_0^2▒〖(6𝑥 + 3)/(𝑥^2 + 4) 𝑑𝑥=𝐹(2)−𝐹(0) 〗 =3𝑙𝑜𝑔|2^2+4|+3/2 tan^(−1)〖2/2−3𝑙𝑜𝑔|0+4|−3/2 tan^(−1)(0/2) 〗 =3𝑙𝑜𝑔|4+4|+3/2 tan^(−1)〖1−3𝑙𝑜𝑔|4|−3/2 × 0〗 =3𝑙𝑜𝑔|8|−3𝑙𝑜𝑔|4|+3/2 𝜋/4 =3(𝑙𝑜𝑔|8|−𝑙𝑜𝑔|4|)+3𝜋/8 =3𝑙𝑜𝑔|8/4|+3𝜋/8 =𝟑 𝐥𝐨𝐠〖𝟐+𝟑𝝅/𝟖〗 (As log A – log B = log A/B )