




Get live Maths 1-on-1 Classs - Class 6 to 12
Ex 7.9
Ex 7.9, 2
Ex 7.9, 3
Ex 7.9, 4 Important
Ex 7.9, 5
Ex 7.9, 6
Ex 7.9, 7
Ex 7.9, 8 Important
Ex 7.9, 9
Ex 7.9, 10
Ex 7.9, 11 Important
Ex 7.9, 12
Ex 7.9, 13
Ex 7.9, 14 Important
Ex 7.9, 15
Ex 7.9, 16 Important You are here
Ex 7.9, 17 Important
Ex 7.9, 18
Ex 7.9, 19 Important
Ex 7.9, 20 Important
Ex 7.9, 21 (MCQ) Important
Ex 7.9, 22 (MCQ)
Last updated at March 23, 2023 by Teachoo
Ex 7.9, 16 ∫_1^2▒(5𝑥^2)/(𝑥^2 + 4𝑥 + 3) 𝑑𝑥 Let F(𝑥)=∫1▒〖(5𝑥^2)/(𝑥^2 + 4𝑥 + 3) 𝑑𝑥〗 =5∫1▒〖𝑥^2/(𝑥^2 + 4𝑥 + 3) 𝑑𝑥〗 =5∫1▒〖(𝑥^2 + 4𝑥 + 3 − 4𝑥 − 3)/(𝑥^2 + 4𝑥 + 3) 𝑑𝑥〗 =5∫1▒〖(𝑥^2 + 4𝑥 + 3)/(𝑥^2 + 4𝑥 + 3) 𝑑𝑥〗−5∫1▒〖( (4𝑥 + 3))/(𝑥^2 + 4𝑥 + 3) 𝑑𝑥〗 =∫1▒〖(5−(20𝑥 + 15 )/(𝑥^2 + 4𝑥 + 3)) 𝑑𝑥〗 =∫1▒〖(5−(20𝑥 + 15 )/(𝑥^2 + 3𝑥 + 𝑥 + 3)) 𝑑𝑥〗 =∫1▒〖(5−(20𝑥 + 15 )/(𝑥(𝑥 + 3) + 1(𝑥 + 3))) 𝑑𝑥〗 =∫1▒〖(5−(20𝑥 + 15 )/((𝑥 + 3) (𝑥 + 1))) 𝑑𝑥〗 Now, Let (20𝑥 + 15)/(𝑥 + 3)(𝑥 + 1) =A/(𝑥 + 3)+B/(𝑥 + 1) (20𝑥 + 15)/(𝑥 + 3)(𝑥 + 1) =(A(𝑥 + 1) + B(𝑥 + 3))/(𝑥 + 3)(𝑥 + 1) Canceling denominator 20𝑥+15=A(𝑥 + 1) + B(𝑥 + 3) Putting 𝑥=−1 20(−1)+15=A(−1 + 1) + B(−1 + 3) −20+15=A×0+B (2) Putting 𝑥=−1 20(−1)+15=A(−1 + 1) + B(−1 + 3) −20+15=A×0+B (2) −5=2B B=(−5)/( 2) Similarly Putting 𝑥=−3 20(−3)+15=A(−3+1)+B(−3+3) −60+15=A(−2) B×0 −45=−2A A=45/2 Hence ∫1▒█((5𝑥^2)/(𝑥^2 + 4𝑥 + 3) " " =∫1▒〖(5−(20𝑥 + 15 )/(𝑥^2 + 4𝑥 + 3)) 𝑑𝑥〗) =∫1▒〖5−A/(𝑥+3)−〗 B/(𝑥+1) 𝑑𝑥 =∫1▒〖5 𝑑𝑥〗−∫1▒〖(45/2)/(𝑥 +_3) 𝑑𝑥−∫1▒〖(((−5)/( 2)))/(𝑥+1) 𝑑𝑥〗〗 =5𝑥−45/2 𝑙𝑜𝑔|𝑥+3|+5/2 𝑙𝑜𝑔|𝑥+1| Hence F(𝑥)=5𝑥−5/2 [9 𝑙𝑜𝑔|𝑥+3|−𝑙𝑜𝑔|𝑥+1|] Now, ∫_1^2▒〖(5𝑥^2)/(𝑥^2 + 4𝑥 + 3) 𝑑𝑥=𝐹(2)−𝐹(1) 〗 =[5×2−5/2 (9 𝑙𝑜𝑔|2+3|−𝑙𝑜𝑔|2+1|)] − [5 ×1−5/2 (9 𝑙𝑜𝑔|1+3|−𝑙𝑜𝑔|1+1|)] =10−5/2 [9 𝑙𝑜𝑔 5−𝑙𝑜𝑔 3]−5+5/2 [9 𝑙𝑜𝑔 4−𝑙𝑜𝑔 2] =10−5−5/2 [9𝑙𝑜𝑔 5−𝑙𝑜𝑔 3−9𝑙𝑜𝑔 4+𝑙𝑜𝑔 2)] =10−5−5/2 [9𝑙𝑜𝑔 5−9𝑙𝑜𝑔 4−(𝑙𝑜𝑔 3−𝑙𝑜𝑔 2)] =𝟓−𝟓/𝟐 (𝟗 𝐥𝐨𝐠 𝟓/𝟒−𝐥𝐨𝐠 𝟑/𝟐) (log a − log b = log 𝑎/𝑏)