


Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 7.8
Ex 7.8, 2
Ex 7.8, 3
Ex 7.8, 4 Important
Ex 7.8, 5
Ex 7.8, 6
Ex 7.8, 7
Ex 7.8, 8 Important You are here
Ex 7.8, 9
Ex 7.8, 10
Ex 7.8, 11 Important
Ex 7.8, 12
Ex 7.8, 13
Ex 7.8, 14 Important
Ex 7.8, 15
Ex 7.8, 16 Important
Ex 7.8, 17 Important
Ex 7.8, 18
Ex 7.8, 19 Important
Ex 7.8, 20 Important
Ex 7.8, 21 (MCQ) Important
Ex 7.8, 22 (MCQ)
Last updated at June 13, 2023 by Teachoo
Ex 7.8, 8 ∫_(𝜋/6)^(𝜋/4)▒〖𝑐𝑜𝑠𝑒𝑐 𝑥〗𝑑𝑥 Let F(𝑥)=∫1▒〖𝑐𝑜𝑠𝑒𝑐 𝑥 . 𝑑𝑥〗 Multiplying and Dividing by 𝑐𝑜𝑠𝑒𝑐 𝑥+𝑐𝑜𝑡 𝑥 F(𝑥)=∫1▒(𝑐𝑜𝑠𝑒𝑐 𝑥 (𝑐𝑜𝑠𝑒𝑐 𝑥 + 𝑐𝑜𝑡 𝑥))/(𝑐𝑜𝑠𝑒𝑐 𝑥 + 𝑐𝑜𝑡 𝑥) 𝑑𝑥 Let c𝑜𝑠𝑒𝑐 𝑥+𝑐𝑜𝑡 𝑥=𝑡 Differentiating w.r.t. 𝑥 𝑑/𝑑𝑥 (𝑐𝑜𝑠𝑒𝑐 𝑥+𝑐𝑜𝑡 𝑥)=𝑑𝑡/𝑑𝑥 −𝑐𝑜𝑠𝑒𝑐^2 𝑥−𝑐𝑜𝑠𝑒𝑐 𝑥 𝑐𝑜𝑡 𝑥=𝑑𝑡/𝑑𝑥 −𝑐𝑜𝑠𝑒𝑐 𝑥(𝑐𝑜𝑠𝑒𝑐 𝑥+𝑐𝑜𝑡 𝑥)=𝑑𝑡/𝑑𝑥 𝑑𝑥=𝑑𝑡/(−𝑐𝑜𝑠𝑒𝑐 𝑥 (𝑐𝑜𝑠𝑒𝑐 𝑥 + 𝑐𝑜𝑡 𝑥) ) Therefore, ∫1▒(𝑐𝑜𝑠𝑒𝑐 𝑥(𝑐𝑜𝑠𝑒𝑐 𝑥 + 𝑐𝑜𝑡 𝑥))/(𝑐𝑜𝑠𝑒𝑐 𝑥 + 𝑐𝑜𝑡 𝑥) 𝑑𝑥 =∫1▒(𝑐𝑜𝑠𝑒𝑐 𝑥(𝑐𝑜𝑠𝑒𝑐 𝑥 + 𝑐𝑜𝑡 𝑥))/𝑡. 𝑑𝑡/(−𝑐𝑜𝑠𝑒𝑐 𝑥(𝑐𝑜𝑠𝑒𝑐 𝑥 + 𝑐𝑜𝑡 𝑥) ) =−∫1▒𝑑𝑡/𝑡 =−log〖 |𝑡|〗 =−log〖 |𝑐𝑜𝑠𝑒𝑐 𝑥+𝑐𝑜𝑡 𝑥|〗 Hence, F(𝑥)=−log|𝑐𝑜𝑠𝑒𝑐 𝑥+cot𝑥 | Now, ∫_(𝜋/6)^(𝜋/4)▒〖𝑐𝑜𝑠𝑒𝑐 𝑥=𝐹(𝜋/4)−𝐹(𝜋/6) 〗 =−𝑙𝑜𝑔|𝑐𝑜𝑠𝑒𝑐(𝜋/4)+𝑐𝑜𝑡(𝜋/4)|− (−log|𝑐𝑜𝑠𝑒𝑐(𝜋/6)+ 𝑐𝑜𝑡(𝜋/6)| ) =−𝑙𝑜𝑔|√2+1|+𝑙𝑜𝑔|2+√3| =−𝑙𝑜𝑔|2+√3|− 𝑙𝑜𝑔|√2+1| =𝑙𝑜𝑔|(2 + √3)/(√2 + 1)| =𝑙𝑜𝑔|(2 + √3)/(√2 + 1)×(2 − √3)/(2 − √3)| =𝑙𝑜𝑔[((2)^2 − (√3)^2)/((√2 + 1) × (2 − √3) )] =𝑙𝑜𝑔[(4 − 3)/(√2 + 1)(2 − √3) ] =𝑙𝑜𝑔[(1 × (√2 − 1))/((2 − √3)(√2 + 1) ×(√2 − 1) )] =𝑙𝑜𝑔[(√2 − 1)/(2 − √3)[(√2)^2− 1^2 ] ] =𝒍𝒐𝒈[(√𝟐 − 𝟏)/(𝟐 − √𝟑)]