





Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Examples
Example 2
Example 3
Example 4 Important
Example 5
Example 6
Example 7
Example 8 Important
Example 9 Important
Example 10
Example 11 Important
Example 12
Example 13 Important
Example 14 Deleted for CBSE Board 2023 Exams
Example 15 Deleted for CBSE Board 2023 Exams
Example 16 Deleted for CBSE Board 2023 Exams
Example 17 Important Deleted for CBSE Board 2023 Exams
Example 18 Deleted for CBSE Board 2023 Exams
Example 19 Deleted for CBSE Board 2023 Exams
Example 20 Deleted for CBSE Board 2023 Exams
Example 21 Deleted for CBSE Board 2023 Exams
Example 22 Deleted for CBSE Board 2023 Exams
Example 23 Deleted for CBSE Board 2023 Exams
Example 24
Example 25
Example 26
Example 27
Example 28 Important
Example 29
Example 30 Important
Example 31
Example 32 Important
Example 33 Important
Example 34
Example 35 Important
Example 36
Example 37 Important
Example 38 Important
Example 39
Example 40 Important
Example 41 Important
Example 42 Important
Example 43 Important
Example 44 Important
Example 45 Important Deleted for CBSE Board 2023 Exams
Example 46 Important Deleted for CBSE Board 2023 Exams
Example 47 Important
Example 48 Important
Example 49
Example 50 Important You are here
Example 51
Last updated at April 19, 2021 by Teachoo
Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Example 50 An open topped box is to be constructed by removing equal squares from each corner of a 3 meter by 8 meter rectangular sheet of aluminum and folding up the sides. Find the volume of the largest such box.Let 𝒙 m be the length of a side of the removed square Hence, Length after removing = 8 – 𝑥 – 𝑥 = 8 – 2𝒙 Breadth after removing = 3 – 𝑥 – 𝑥 = 3 – 2𝒙 Height of the box = 𝒙 We need to maximize volume of box Let V be the volume of a box V = Length × Breadth × Height) = (8−2𝑥)(3−2𝑥)(𝑥) = (8−2𝑥)(3𝑥−2𝑥2) = 8(3𝑥−2𝑥2) – 2x (3𝑥−2𝑥2) = 24𝑥 – 16x2 – 6𝑥2 + 4𝑥3 = 4𝒙3 – 22𝒙2 + 24𝒙 Now, 𝑉(𝑥) = 4𝑥3 – 22𝑥2 + 24𝑥 Diff w.r.t. x 𝑉′(𝑥) = 𝑑(4𝑥^3 − 22𝑥^2 + 24𝑥)/𝑑𝑥 𝑉′(𝑥) = 4 × 3x2 – 22 × 2𝑥 + 24 𝑉′(𝑥) = 12𝑥2 – 44𝑥 + 24 𝑉′(𝑥) = 4(3𝑥2−11𝑥+6) Putting 𝑽′(𝒙) = 0 4(3𝑥2−11𝑥+6) = 0 3𝑥2−11𝑥+6 = 0 3𝑥2 –9𝑥 – 2𝑥 + 6 = 0 3𝑥(𝑥−3) –2 (𝑥−3) = 0 (3𝑥−2)(𝑥−3)= 0 So, 𝒙=𝟐/𝟑 & 𝒙=𝟑 If 𝒙 = 3 Breadth of a box = 3 – 2𝑥 = 3 – 2(3) = 3 – 6 = –3 Since, breadth cannot be negative, ∴ x = 3 is not possible Hence, 𝒙 = 𝟐/𝟑 only Finding 𝑽’’(𝒙) 𝑉’(𝑥) = 4(3𝑥2−11𝑥+6) Diff w.r.t 𝑥 𝑉’’(𝑥) = 𝑑(4(3𝑥^2 − 11𝑥 + 6)/𝑑𝑥 𝑉’’(𝑥) = 4 (3×2𝑥−11) 𝑉’’(𝑥) = 4 (6𝑥−11) Putting x = 𝟐/𝟑 𝑽’’(𝟐/𝟑)=4(6(2/3)−11) = 4 (4−11)= –28 < 0 Since 𝑉’’(𝑥) < 0 at 𝑥 = 2/3 ∴ 𝑥 = 2/3 is point of maxima Hence, 𝑽(𝒙) is largest when 𝒙 = 𝟐/𝟑 Largest volume is 𝑉(𝑥) = x(3−2𝑥) (8−2𝑥) 𝑽(𝟐/𝟑) = 2/3 (3−2(2/3)) (8−2(2/3)) = 2/3 (3−4/3)(8−4/3) = 2/3 ((9 − 4)/3)((24 − 4)/3) = 2/3 (5/3)(20/3) = 200/27 Since dimension of volume is m3 Largest volume is 𝟐𝟎𝟎/𝟐𝟕 m3