Check sibling questions

Example 30 - Find all points of local maxima, minima - CBSE

Example 30 - Chapter 6 Class 12 Application of Derivatives - Part 2

Example 30 - Chapter 6 Class 12 Application of Derivatives - Part 3 Example 30 - Chapter 6 Class 12 Application of Derivatives - Part 4 Example 30 - Chapter 6 Class 12 Application of Derivatives - Part 5

Get live Maths 1-on-1 Classs - Class 6 to 12


Transcript

Example 30 (Method 1) Find all the points of local maxima and local minima of the function f given by f (π‘₯)=2π‘₯3 –6π‘₯2+6π‘₯+5.f (π‘₯)=2π‘₯3 –6π‘₯2+ 6π‘₯+5 Finding f’ (𝒙) f β€²(π‘₯)= 𝑑(2π‘₯3 – 6π‘₯2 + 6π‘₯ + 5)/𝑑π‘₯ f β€²(π‘₯)=6π‘₯2 –12π‘₯+6+0 f β€²(π‘₯)=6(π‘₯^2βˆ’2π‘₯+1) Putting f β€²(𝒙)= 0 6(π‘₯^2βˆ’2π‘₯+1)=0 π‘₯^2βˆ’2π‘₯+1=0 (π‘₯)^2+(1)^2βˆ’2(π‘₯)(1)=0 (π‘₯βˆ’1)^2=0 So, 𝒙=𝟏 is only critical point Hence 𝒙=𝟏 is point of inflexion Example 30 (Method 2) Find all the points of local maxima and local minima of the function f given by f (π‘₯)=2π‘₯3 –6π‘₯2+6π‘₯+5. f (π‘₯)=2π‘₯3 –6π‘₯2+ 6π‘₯+5 Finding f’ (𝒙) f β€²(π‘₯)= 𝑑(2π‘₯3 – 6π‘₯2+ 6π‘₯ + 5)/𝑑π‘₯ f β€²(π‘₯)=6π‘₯2 –12π‘₯+6+0 f β€²(π‘₯)=6(π‘₯^2βˆ’2π‘₯+1) Putting f β€²(𝒙)= 0 6(π‘₯^2βˆ’2π‘₯+1)=0 π‘₯^2βˆ’2π‘₯+1=0 π‘₯^2+1^2βˆ’2(π‘₯)(1)=0 (π‘₯βˆ’1)^2=0 So, 𝒙=𝟏 is only critical point Finding f’’(𝒙) f’’(π‘₯)=6 𝑑(π‘₯^2 βˆ’ 2π‘₯ + 1)/𝑑π‘₯ f’’(π‘₯)=6(2π‘₯βˆ’2+0) f’’(π‘₯)=12(π‘₯βˆ’1) Putting 𝒙=𝟏 f’’(1)=12(1βˆ’1) = 12 Γ— 0 = 0 Since f’’(1) = 0 Hence, π‘₯=1 is neither point of Maxima nor point of Minima ∴ 𝒙=𝟏 is Point of Inflexion.

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.