




Introducing your new favourite teacher - Teachoo Black, at only βΉ83 per month
Examples
Example 2
Example 3
Example 4 Important
Example 5
Example 6
Example 7
Example 8 Important
Example 9 Important
Example 10
Example 11 Important
Example 12
Example 13 Important
Example 14
Example 15
Example 16
Example 17 Important
Example 18
Example 19
Example 20
Example 21
Example 22
Example 23
Example 24
Example 25
Example 26
Example 27
Example 28 Important
Example 29
Example 30 Important You are here
Example 31
Example 32 Important
Example 33 Important
Example 34
Example 35 Important
Example 36
Example 37 Important
Example 38 Important
Example 39
Example 40 Important
Example 41 Important
Example 42 Important
Example 43 Important
Example 44 Important
Example 45 Important
Example 46 Important
Example 47 Important
Example 48 Important
Example 49
Example 50 Important
Example 51
Last updated at May 6, 2021 by Teachoo
Example 30 (Method 1) Find all the points of local maxima and local minima of the function f given by f (π₯)=2π₯3 β6π₯2+6π₯+5.f (π₯)=2π₯3 β6π₯2+ 6π₯+5 Finding fβ (π) f β²(π₯)= π(2π₯3 β 6π₯2 + 6π₯ + 5)/ππ₯ f β²(π₯)=6π₯2 β12π₯+6+0 f β²(π₯)=6(π₯^2β2π₯+1) Putting f β²(π)= 0 6(π₯^2β2π₯+1)=0 π₯^2β2π₯+1=0 (π₯)^2+(1)^2β2(π₯)(1)=0 (π₯β1)^2=0 So, π=π is only critical point Hence π=π is point of inflexion Example 30 (Method 2) Find all the points of local maxima and local minima of the function f given by f (π₯)=2π₯3 β6π₯2+6π₯+5. f (π₯)=2π₯3 β6π₯2+ 6π₯+5 Finding fβ (π) f β²(π₯)= π(2π₯3 β 6π₯2+ 6π₯ + 5)/ππ₯ f β²(π₯)=6π₯2 β12π₯+6+0 f β²(π₯)=6(π₯^2β2π₯+1) Putting f β²(π)= 0 6(π₯^2β2π₯+1)=0 π₯^2β2π₯+1=0 π₯^2+1^2β2(π₯)(1)=0 (π₯β1)^2=0 So, π=π is only critical point Finding fββ(π) fββ(π₯)=6 π(π₯^2 β 2π₯ + 1)/ππ₯ fββ(π₯)=6(2π₯β2+0) fββ(π₯)=12(π₯β1) Putting π=π fββ(1)=12(1β1) = 12 Γ 0 = 0 Since fββ(1) = 0 Hence, π₯=1 is neither point of Maxima nor point of Minima β΄ π=π is Point of Inflexion.