Examples

Example 1

Example 2

Example 3

Example 4 Important

Example 5

Example 6

Example 7

Example 8 Important

Example 9 Important

Example 10

Example 11 Important

Example 12

Example 13 Important

Example 14 Deleted for CBSE Board 2023 Exams

Example 15 Deleted for CBSE Board 2023 Exams

Example 16 Deleted for CBSE Board 2023 Exams

Example 17 Important Deleted for CBSE Board 2023 Exams

Example 18 Deleted for CBSE Board 2023 Exams

Example 19 Deleted for CBSE Board 2023 Exams

Example 20 Deleted for CBSE Board 2023 Exams You are here

Example 21 Deleted for CBSE Board 2023 Exams

Example 22 Deleted for CBSE Board 2023 Exams

Example 23 Deleted for CBSE Board 2023 Exams

Example 24

Example 25

Example 26

Example 27

Example 28 Important

Example 29

Example 30 Important

Example 31

Example 32 Important

Example 33 Important

Example 34

Example 35 Important

Example 36

Example 37 Important

Example 38 Important

Example 39

Example 40 Important

Example 41 Important

Example 42 Important

Example 43 Important

Example 44 Important

Example 45 Important Deleted for CBSE Board 2023 Exams

Example 46 Important Deleted for CBSE Board 2023 Exams

Example 47 Important

Example 48 Important

Example 49

Example 50 Important

Example 51

Chapter 6 Class 12 Application of Derivatives

Serial order wise

Last updated at April 19, 2021 by Teachoo

Example 20 Find the equation of tangent to the curve given by x = a sin3 t , y = b cos3 t at a point where t = π/2 . The curve is given as x = a sin3t , y = b cos3t Slope of the tangent = ππ¦/ππ₯ Here, π π/π π = (π π/π π)/(π π/π π) π π/π π = (π(π cos^3β‘γπ‘)γ)/ππ‘ = β3b cos^2 π‘ sinβ‘π‘ π π/π π = (π(π sin^3β‘γπ‘)γ)/ππ‘ = 3a sin^2β‘π‘ cosβ‘π‘ Hence, ππ¦/ππ₯ = (dy/dt)/(ππ₯/dt) = (β3ππππ ^2 π‘ sinβ‘π‘)/(3π sin^2β‘γπ‘ cosβ‘π‘ γ ) = (βπ πππβ‘π)/(π πππβ‘π ) Now, Slope of the tangent at "t = " π/2 is π π/π π = (βπ γcos γβ‘γπ/2γ)/(π γsin γβ‘γπ/2γ ) = (βπ(0))/(π(1)) = 0 To find Equation of tangent, we need to find point (x, y) Putting t = π/2 in equation of x and y π₯ = π sin3 (π/2) π=π π¦ = b cos3 (π/2) y = 0 Hence, point is (a, 0) Now, Equation of tangent at point (π, 0) and with slope 0 is y β 0 = 0 (x β π) y = 0