

Get live Maths 1-on-1 Classs - Class 6 to 12
Examples
Example 2
Example 3
Example 4 Important
Example 5
Example 6
Example 7
Example 8 Important
Example 9 Important
Example 10
Example 11 Important
Example 12
Example 13 Important
Example 14 Deleted for CBSE Board 2023 Exams
Example 15 Deleted for CBSE Board 2023 Exams
Example 16 Deleted for CBSE Board 2023 Exams
Example 17 Important Deleted for CBSE Board 2023 Exams
Example 18 Deleted for CBSE Board 2023 Exams
Example 19 Deleted for CBSE Board 2023 Exams
Example 20 Deleted for CBSE Board 2023 Exams
Example 21 Deleted for CBSE Board 2023 Exams
Example 22 Deleted for CBSE Board 2023 Exams
Example 23 Deleted for CBSE Board 2023 Exams
Example 24
Example 25 You are here
Example 26
Example 27
Example 28 Important
Example 29
Example 30 Important
Example 31
Example 32 Important
Example 33 Important
Example 34
Example 35 Important
Example 36
Example 37 Important
Example 38 Important
Example 39
Example 40 Important
Example 41 Important
Example 42 Important
Example 43 Important
Example 44 Important
Example 45 Important Deleted for CBSE Board 2023 Exams
Example 46 Important Deleted for CBSE Board 2023 Exams
Example 47 Important
Example 48 Important
Example 49
Example 50 Important
Example 51
Last updated at March 16, 2023 by Teachoo
Example 25 If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximate error in calculating its volume.Given Radius of sphere = r = 9 cm Error in radius = ∆r = 0.03 cm We need to find Error in calculating Volume Let Volume of sphere = V = 𝟒/𝟑 𝝅𝒓^𝟑 ∴ We need to find ∆V Now, ∆V = 𝑑𝑉/𝑑𝑟 ∆r = 𝑑(4/3 𝜋𝑟^3 )/𝑑𝑟 ∆r = 4/3 𝜋 (𝑑𝑟^3)/𝑑𝑟 ∆r = 4/3 𝜋 (3𝑟^2 )(0.03 ) = 4𝜋𝑟^2(0.03) = 4𝜋(9)2 (0.03) = 9.72𝝅 cm3 Hence, approximate error in calculating volume is 9.72𝜋 cm3