Check Full Chapter Explained - Continuity and Differentiability - Application of Derivatives (AOD) Class 12

Last updated at May 29, 2018 by Teachoo

Check Full Chapter Explained - Continuity and Differentiability - Application of Derivatives (AOD) Class 12

Transcript

Example 25 If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximate error in calculating its volume. Let r be the radius of the sphere Given r = 9 cm Error in measurement of radius = r r = 0.03 cm Volume of the sphere = V = 4 3 3 We need to find error in calculating the volume i.e V V = r = 4 3 3 r V = 4 3 3 r V = 4 3 3 2 0.03 = 4 2 (0.03) = 4 (9)2 (0.03) = 9.72 cm3 Hence, approximately error in calculating the volume is 9.72 cm3

Examples

Example 1
Not in Syllabus - CBSE Exams 2021

Example 2 Not in Syllabus - CBSE Exams 2021

Example 3 Not in Syllabus - CBSE Exams 2021

Example 4 Important Not in Syllabus - CBSE Exams 2021

Example 5 Not in Syllabus - CBSE Exams 2021

Example 6 Not in Syllabus - CBSE Exams 2021

Example 7

Example 8 Important

Example 9 Important

Example 10

Example 11 Important

Example 12

Example 13 Important

Example 14

Example 15

Example 16

Example 17 Important

Example 18

Example 19

Example 20

Example 21 Not in Syllabus - CBSE Exams 2021

Example 22 Not in Syllabus - CBSE Exams 2021

Example 23 Not in Syllabus - CBSE Exams 2021

Example 24

Example 25 You are here

Example 26

Example 27

Example 28 Important

Example 29

Example 30 Important

Example 31

Example 32 Important

Example 33 Important

Example 34

Example 35 Important

Example 36

Example 37 Important

Example 38 Important

Example 39

Example 40 Important

Example 41 Important

Example 42 Important Not in Syllabus - CBSE Exams 2021

Example 43 Important Not in Syllabus - CBSE Exams 2021

Example 44 Important Not in Syllabus - CBSE Exams 2021

Example 45 Important

Example 46 Important

Example 47 Important

Example 48 Important

Example 49 Not in Syllabus - CBSE Exams 2021

Example 50 Important

Example 51

Chapter 6 Class 12 Application of Derivatives

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.