Examples
Example 2
Example 3
Example 4 Important
Example 5
Example 6
Example 7
Example 8 Important
Example 9 Important
Example 10
Example 11 Important
Example 12
Example 13 Important
Example 14
Example 15
Example 16 Important
Example 17
Example 18 Important
Example 19
Example 20 Important You are here
Example 21 Important
Example 22
Example 23 Important
Example 24
Example 25 Important
Example 26 Important
Example 27
Example 28 Important
Example 29 Important
Example 30 Important
Example 31 Important
Example 32 Important
Example 33 Important
Example 34 Important
Example 35
Example 36 Important
Example 37
Question 1 Deleted for CBSE Board 2025 Exams
Question 2 Deleted for CBSE Board 2025 Exams
Question 3 Deleted for CBSE Board 2025 Exams
Question 4 Important Deleted for CBSE Board 2025 Exams
Question 5 Deleted for CBSE Board 2025 Exams
Question 6 Deleted for CBSE Board 2025 Exams
Question 7 Deleted for CBSE Board 2025 Exams
Question 8 Deleted for CBSE Board 2025 Exams
Question 9 Deleted for CBSE Board 2025 Exams
Question 10 Deleted for CBSE Board 2025 Exams
Question 11 Deleted for CBSE Board 2025 Exams
Question 12 Deleted for CBSE Board 2025 Exams
Question 13 Important Deleted for CBSE Board 2025 Exams
Question 14 Important Deleted for CBSE Board 2025 Exams
Last updated at April 16, 2024 by Teachoo
Example 20 Find local maximum and local minimum values of the function f given by f (đĽ)=3đĽ4 + 4đĽ3 â 12đĽ2 + 12f (đĽ)=3đĽ4 + 4đĽ3 â 12đĽ2 + 12 Finding fâ (đ) fâ (đĽ)=đ(3đĽ4 + 4đĽ3 â 12đĽ2 + 12)/đđĽ fâ (đĽ)=12đĽ^3+12đĽ^2 â 24đĽ "+ 0" fâ (đĽ)=12(đĽ^3+đĽ^2â2đĽ) fâ (đĽ)=12đĽ(đĽ^2+đĽâ2) fâ (đĽ)=12đĽ (đĽ^2+2đĽâđĽâ2) fâ (đĽ)=12đĽ (đĽ(đĽ+2)â1(đĽ+2)) fâ (đĽ)=đđđ (đâđ)(đ+đ) Putting fâ (đ)=đ 12đĽ (đĽâ1)(đĽ+2)=0 đĽ (đĽâ1)(đĽ+2)=0 So, đ=đ,đĽ=đ,& đĽ=âđ Finding fââ(đ) f â(đĽ)=12(đĽ^3+đĽ^2â2đĽ) f ââ(đĽ)=12đ(đĽ^3 + đĽ^2 â 2đĽ)/đđĽ f ââ(đĽ)=đđ(đđ^đ+đđâđ) At đ=đ f ââ(0)=12(3(0)^2+2(0)â2)= 32 (0+0 â2)= â 64 < 0 Since fââ(đĽ)<0 at đĽ=0 â´ đĽ = 0 is point of local maxima Thus, f(đĽ) is maximum at đĽ=0 At đ=đ fââ(1)=12(3(1)^2+2(1)â2)= 12 (3+2â2) = 36 > 0 Since fââ(đĽ)>0 at đĽ=1 â´ đĽ = 1 is point of local minima Thus, f(đĽ) is minimum at đĽ=1 At đ=âđ fââ(â2)=12(3(â2)^2+2(â2)â2)= 12 (12â4â2)= 72 > 0 Since fââ(đĽ)>0 at đĽ=â2 â´ đĽ = â2 is point of local minima Thus, f(đĽ) is minimum at đĽ=â2 Finding local minimum and maximum value fâ (đĽ)=đđđ (đâđ)(đ+đ) Local maximum value of f (đĽ) at đĽ=0 f (0)=3(0)4 + 4(0)3 â 12(0)2 + 12 = 0 + 0 â 0 + 12 = 12 Local minimum value of f (đĽ) at đĽ=1 f (1)=3(1)4 + 4(1)3 â 12(1)2 + 12 = 3 + 4 â 12 + 12 = 7 Local Minimum value of f (đĽ) at đĽ=â2 f (â2)=3(â2)4 + 4(â2)3 â 12(â2)2 + 12 = 48 â 32 â 48 + 12 = â 20