Check Full Chapter Explained - Continuity and Differentiability - Application of Derivatives (AOD) Class 12


Last updated at Dec. 8, 2016 by Teachoo
Check Full Chapter Explained - Continuity and Differentiability - Application of Derivatives (AOD) Class 12
Transcript
Example 22 Use differential to approximate (25)13 Let 𝑦 =𝑥13 Let 𝑥=27 and △𝑥=−2 Since 𝑦 =𝑥13 𝑑𝑥𝑑𝑦=𝑑𝑥13𝑑𝑥 𝑑𝑥𝑑𝑦=13 𝑥13 − 1 𝑑𝑥𝑑𝑦=13 𝑥−23 𝑑𝑥𝑑𝑦=13𝑥23 Now, ∆𝑦=𝑑𝑦𝑑𝑥∆𝑥 ∆𝑦= 13𝑥23∆𝑥 Putting values ∆𝑦= 132723−2 ∆𝑦= −23 ×3323 ∆𝑦= −23 × 32 ∆𝑦= −227 ∆𝑦=−0.074 Also, ∆𝑦=𝑓𝑥+∆𝑥 −𝑓𝑥 ∆𝑦=𝑥+∆𝑥13−𝑥13 Putting values −0.074=27−213−2713 −0.074=2513−33 × 13 −0.074=2513−3 2513=−0.074+3 2513=2.926 Hence, approximate value of 2513 is 𝟐.𝟗𝟐𝟔
Examples
Example 2 Not in Syllabus - CBSE Exams 2021
Example 3 Not in Syllabus - CBSE Exams 2021
Example 4 Important Not in Syllabus - CBSE Exams 2021
Example 5 Not in Syllabus - CBSE Exams 2021
Example 6 Not in Syllabus - CBSE Exams 2021
Example 7
Example 8 Important
Example 9 Important
Example 10
Example 11 Important
Example 12
Example 13 Important
Example 14
Example 15
Example 16
Example 17 Important
Example 18
Example 19
Example 20
Example 21 Not in Syllabus - CBSE Exams 2021
Example 22 Not in Syllabus - CBSE Exams 2021 You are here
Example 23 Not in Syllabus - CBSE Exams 2021
Example 24
Example 25
Example 26
Example 27
Example 28 Important
Example 29
Example 30 Important
Example 31
Example 32 Important
Example 33 Important
Example 34
Example 35 Important
Example 36
Example 37 Important
Example 38 Important
Example 39
Example 40 Important
Example 41 Important
Example 42 Important Not in Syllabus - CBSE Exams 2021
Example 43 Important Not in Syllabus - CBSE Exams 2021
Example 44 Important Not in Syllabus - CBSE Exams 2021
Example 45 Important
Example 46 Important
Example 47 Important
Example 48 Important
Example 49 Not in Syllabus - CBSE Exams 2021
Example 50 Important
Example 51
About the Author