Check Full Chapter Explained - Continuity and Differentiability - Application of Derivatives (AOD) Class 12

Last updated at Dec. 8, 2016 by Teachoo
Check Full Chapter Explained - Continuity and Differentiability - Application of Derivatives (AOD) Class 12
Transcript
Example 26 Find the maximum and the minimum values, if any, of the function f given by f (𝑥) = 𝑥2 , 𝑥 ∈ R f𝑥=𝑥2 First we plot the graph of 𝑥2 Note that at 𝑥 = 0 f0=0 Also we note that f𝑥>0 for all 𝑥 , 𝑥 ∈ R except 0 So minimum value of f𝒙=𝟎 at 𝒙 = 0 Since f𝑥>0 for 𝑥 ∈ R expect 0 So, we can not find a maximum value e.g. f100=1002= 10000 f1000= 10002= 1000000 Hence , we cannot find a maximum value of f𝒙 on , 𝒙 ∈ R
Examples
Example 2 Not in Syllabus - CBSE Exams 2021
Example 3 Not in Syllabus - CBSE Exams 2021
Example 4 Important Not in Syllabus - CBSE Exams 2021
Example 5 Not in Syllabus - CBSE Exams 2021
Example 6 Not in Syllabus - CBSE Exams 2021
Example 7
Example 8 Important
Example 9 Important
Example 10
Example 11 Important
Example 12
Example 13 Important
Example 14
Example 15
Example 16
Example 17 Important
Example 18
Example 19
Example 20
Example 21 Not in Syllabus - CBSE Exams 2021
Example 22 Not in Syllabus - CBSE Exams 2021
Example 23 Not in Syllabus - CBSE Exams 2021
Example 24
Example 25
Example 26 You are here
Example 27
Example 28 Important
Example 29
Example 30 Important
Example 31
Example 32 Important
Example 33 Important
Example 34
Example 35 Important
Example 36
Example 37 Important
Example 38 Important
Example 39
Example 40 Important
Example 41 Important
Example 42 Important Not in Syllabus - CBSE Exams 2021
Example 43 Important Not in Syllabus - CBSE Exams 2021
Example 44 Important Not in Syllabus - CBSE Exams 2021
Example 45 Important
Example 46 Important
Example 47 Important
Example 48 Important
Example 49 Not in Syllabus - CBSE Exams 2021
Example 50 Important
Example 51
About the Author