






Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Examples
Example 2
Example 3
Example 4 Important
Example 5
Example 6
Example 7
Example 8 Important
Example 9 Important
Example 10
Example 11 Important
Example 12
Example 13 Important
Example 14
Example 15
Example 16 Important
Example 17
Example 18 Important
Example 19
Example 20 Important
Example 21 Important
Example 22
Example 23 Important
Example 24
Example 25 Important
Example 26 Important
Example 27
Example 28 Important
Example 29 Important
Example 30 Important
Example 31 Important
Example 32 Important
Example 33 Important
Example 34 Important
Example 35
Example 36 Important
Example 37
Question 1 Deleted for CBSE Board 2024 Exams
Question 2 Deleted for CBSE Board 2024 Exams
Question 3 Deleted for CBSE Board 2024 Exams
Question 4 Important Deleted for CBSE Board 2024 Exams
Question 5 Deleted for CBSE Board 2024 Exams
Question 6 Deleted for CBSE Board 2024 Exams
Question 7 Deleted for CBSE Board 2024 Exams
Question 8 Deleted for CBSE Board 2024 Exams
Question 9 Deleted for CBSE Board 2024 Exams
Question 10 Deleted for CBSE Board 2024 Exams
Question 11 Deleted for CBSE Board 2024 Exams
Question 12 Deleted for CBSE Board 2024 Exams
Question 13 Important Deleted for CBSE Board 2024 Exams
Question 14 Important Deleted for CBSE Board 2024 Exams You are here
Last updated at May 29, 2023 by Teachoo
Question 14 Find the equation of tangents to the curve y = cos (x + y), – 2𝜋 ≤ x ≤ 2𝜋 that are parallel to the line x + 2y = 0. Given curve is 𝑦 = cos (𝑥+𝑦) We need to find equation of tangent which is parallel to the line 𝑥 + 2𝑦 = 0 We know that slope of tangent is 𝑑𝑦/𝑑𝑥 𝑦 = cos (𝑥+𝑦) Diff w.r.t. 𝒙 𝑑𝑦/𝑑𝑥 = 𝑑(𝑐𝑜𝑠(𝑥 + 𝑦))/𝑑𝑥 𝑑𝑦/𝑑𝑥 = –sin (𝑥+𝑦) 𝑑(𝑥 + 𝑦)/𝑑𝑥 𝑑𝑦/𝑑𝑥 = – sin (𝑥+𝑦) (𝑑𝑥/𝑑𝑥+𝑑𝑦/𝑑𝑥) 𝑑𝑦/𝑑𝑥 = – sin (𝑥+𝑦) (1+𝑑𝑦/𝑑𝑥) 𝑑𝑦/𝑑𝑥 = – sin (𝑥+𝑦) – sin(𝑥+𝑦). 𝑑𝑦/𝑑𝑥 𝑑𝑦/𝑑𝑥 + sin (𝑥+𝑦).𝑑𝑦/𝑑𝑥 = – sin (𝑥+𝑦) 𝑑𝑦/𝑑𝑥 (1+𝑠𝑖𝑛(𝑥+𝑦))=−𝑠𝑖𝑛(𝑥+𝑦) 𝒅𝒚/𝒅𝒙 = (−𝒔𝒊𝒏(𝒙 + 𝒚))/(𝟏 + 𝒔𝒊𝒏( 𝒙 + 𝒚) ) ∴ Slope of tangent is (−𝑠𝑖𝑛(𝑥 + 𝑦))/(1 + 𝑠𝑖𝑛(𝑥 + 𝑦) ) Given line is 𝑥 + 2𝑦 = 0 2𝑦 = –𝑥 𝑦 = (−𝑥)/2 𝒚 = (( −𝟏)/𝟐)𝒙+𝟎 The above equation is of the form 𝑦= m𝑥 + c where m is slope ∴ Slope of line is (−1)/2 We know that If two lines are parallel than their slopes are equal Since line is parallel to tangent ∴ Slope of tangent = Slope of line (−𝒔𝒊𝒏(𝒙 + 𝒚))/(𝟏 + 𝒔𝒊𝒏(𝒙 + 𝒚) )= (−𝟏)/𝟐 𝑠𝑖𝑛(𝑥 + 𝑦)/(1 + 𝑠𝑖𝑛(𝑥 + 𝑦) )= 1/2 2 sin(𝑥+𝑦)=1+𝑠𝑖𝑛(𝑥+𝑦) 2 sin (𝑥+𝑦) – sin(𝑥+𝑦)=1 sin (𝒙+𝒚)=𝟏 Since sin 𝜋/2 = 1 sin(𝑥+𝑦) = sin 𝝅/𝟐 Hence, (𝑥 + 𝑦) = nπ + (−1)^n 𝜋/2 Now, Finding points through which tangents pass Given curve y = cos (𝑥+𝑦) Putting value of x + y y = cos (𝑛𝜋+(−1)^𝑛 𝜋/2) y = 0 Putting y = 0 in x 𝑥 + 𝑦 = (𝑛𝜋+(−1)^𝑛 𝜋/2) 𝑥 + 0 = nπ + (−1)^𝑛 𝜋/2 𝑥 = nπ + (−1)^(𝑛 ) 𝜋/2 Since −2π ≤ 𝑥 ≤ 2π Thus, 𝑥 = (−3𝜋)/2 & 𝑥 = 𝜋/2 ∴ Points are ((−𝟑𝝅)/𝟐 , 𝟎) & (𝝅/𝟐 , 𝟎) Putting n = 0 𝑥 = 0(𝜋)+(−1)^0 𝜋/2 𝑥 = 0 + (𝜋/2) 𝒙 = 𝝅/𝟐 Putting n = –1 𝑥 = –1(𝜋)+(−1)^(−1) 𝜋/2 𝑥 = −𝜋−𝜋/2 𝑥 = (−2𝜋 − 𝜋)/2 𝒙 = (−𝟑𝝅)/𝟐 Finding equation of tangents We know that Equation of line at (𝑥1 ,𝑦1) & having slope at 𝑚 is (𝑦−𝑦1)=𝑚(𝑥−𝑥1) Equation of tangent at ((−𝟑𝝅)/𝟐 , 𝟎) & having slope (−𝟏)/𝟐 is (𝑦−0) = (−1)/2 (𝑥−((−3𝜋)/2)) y = (−1)/2 (𝑥+3𝜋/2) y = (−1)/2 ((2𝑥 + 3𝜋)/2) 2x + 4y + 3π = 0 Equation of tangent at (𝝅/𝟐 , 𝟎) & having slope (−𝟏)/𝟐 is (𝑦−0)= (−1)/2 (𝑥−𝜋/2) 𝑦 = (−1)/2 ((2𝑥 − 𝜋)/2) 𝑦 = (−1)/4 (2𝑥−𝜋) 4y = –(2x – π) 2x + 4y − π = 0 Hence Required Equation of tangent are 2x + 4y + 3π = 0 2x + 4y – π = 0