Check Full Chapter Explained - Continuity and Differentiability - Application of Derivatives (AOD) Class 12






Last updated at Jan. 7, 2020 by Teachoo
Check Full Chapter Explained - Continuity and Differentiability - Application of Derivatives (AOD) Class 12
Transcript
Example 4 The length x of a rectangle is decreasing at the rate of 3 cm/minute and the width y is increasing at the rate of 2 cm/minute. When x = 10cm and y = 6cm, find the rates of change of (a) the perimeter and (b) the area of the rectangle. Let length of rectangle = ๐ฅ cm & width of rectangle = ๐ฆ cm Given the length ๐ฅ is decreasing at the rate of 3 cm/ minute i.e. ๐ฅ is decreasing w.r.t time i.e. ๐๐ฅ/๐๐ก = โ 3 cm/ min & The width y is increasing at the rate of 2 cm/min i.e. ๐ฆ is increasing w.r.t time ๐๐ฆ/๐๐ก = 2 cm /min (i) Let P be the perimeter of rectangle. We need to calculate rate of change of perimeter when ๐ฅ = 10 cm & ๐ฆ = 6 cm i.e. we need to calculate ๐๐/๐๐ก when ๐ฅ = 10 cm & ๐ฆ = 6 cm We know that Perimeter of rectangle = 2 (length + width) P = 2 (๐ฅ + ๐ฆ) Now ๐๐/๐๐ก= (๐ (2 (๐ฅ + ๐ฆ) ) )/๐๐ก ๐๐/๐๐ก= 2 [๐(๐ฅ + ๐ฆ)/๐๐ก] ๐๐/๐๐ก= 2 [๐๐ฅ/๐๐ก+ ๐๐ฆ/๐๐ก] From (1) & (2) ๐๐ฅ/๐๐ก = โ3 & ๐๐ฆ/๐๐ก = 2 ๐๐/๐๐ก= 2(โ 3 + 2) ๐๐/๐๐ก= 2 (โ1) ๐๐/๐๐ก= โ2 Since perimeter is in cm & time is in minute ๐๐/๐๐ก = (โ2 ๐๐)/๐๐๐ ๐๐/๐๐ก = โ 2 cm/min Therefore perimeter is decreasing at the rate of 2 cm/min (ii) Let A be the Area of rectangle. We need to calculate Rate of change of area w.r.t when ๐ฅ = 10cm & ๐ฆ = 6 cm i.e. we need to calculate ๐๐ด/๐๐ก when ๐ฅ=10 & ๐ฆ=6 cm We know that Area of rectangle = length ร width A = ๐ฅ ร ๐ฆ Now, ๐๐ด/๐๐ก = (๐ (๐ฅ๐ฆ))/๐๐ก ๐๐ด/๐๐ก = (๐(๐ฅ))/๐๐ก. y + (๐(๐ฆ))/๐๐ก . x From (1) & (2) ๐๐ฅ/๐๐ก = โ3 & ๐๐ฆ/๐๐ก = 2 dA/dt = (โ 3)๐ฆ+2 (๐ฅ) ๐๐ด/๐๐ก = โ 3๐ฆ+2๐ฅ Putting ๐ฅ = 10 & ๐ฆ = 6 cm โ ๐๐ด/๐๐กโค|_(๐ฅ =10, ๐ฆ = 6) = โ 3(6) + 2(10) โ ๐๐ด/๐๐กโค|_(๐ฅ =10, ๐ฆ = 6) = โ 18 + 20 โ ๐๐ด/๐๐กโค|_(๐ฅ =10, ๐ฆ = 6) = 2 Since Area is in cm2 & time is in time in minute ๐๐ด/๐๐ก = (2 ๐๐2)/๐๐๐ ๐๐ด/๐๐ก = 2 cm2/min Hence, Area is increasing at the rate of 2 cm2/min.
Examples
Example 2 Not in Syllabus - CBSE Exams 2021
Example 3 Not in Syllabus - CBSE Exams 2021
Example 4 Important Not in Syllabus - CBSE Exams 2021 You are here
Example 5 Not in Syllabus - CBSE Exams 2021
Example 6 Not in Syllabus - CBSE Exams 2021
Example 7
Example 8 Important
Example 9 Important
Example 10
Example 11 Important
Example 12
Example 13 Important
Example 14
Example 15
Example 16
Example 17 Important
Example 18
Example 19
Example 20
Example 21 Not in Syllabus - CBSE Exams 2021
Example 22 Not in Syllabus - CBSE Exams 2021
Example 23 Not in Syllabus - CBSE Exams 2021
Example 24
Example 25
Example 26
Example 27
Example 28 Important
Example 29
Example 30 Important
Example 31
Example 32 Important
Example 33 Important
Example 34
Example 35 Important
Example 36
Example 37 Important
Example 38 Important
Example 39
Example 40 Important
Example 41 Important
Example 42 Important Not in Syllabus - CBSE Exams 2021
Example 43 Important Not in Syllabus - CBSE Exams 2021
Example 44 Important Not in Syllabus - CBSE Exams 2021
Example 45 Important
Example 46 Important
Example 47 Important
Example 48 Important
Example 49 Not in Syllabus - CBSE Exams 2021
Example 50 Important
Example 51
About the Author