Get Real time Doubt solving from 8pm to 12 am!

Examples

Example 1

Example 2

Example 3

Example 4 Important

Example 5

Example 6

Example 7

Example 8 Important

Example 9 Important

Example 10

Example 11 Important

Example 12

Example 13 Important

Example 14 Deleted for CBSE Board 2023 Exams

Example 15 Deleted for CBSE Board 2023 Exams

Example 16 Deleted for CBSE Board 2023 Exams

Example 17 Important Deleted for CBSE Board 2023 Exams

Example 18 Deleted for CBSE Board 2023 Exams

Example 19 Deleted for CBSE Board 2023 Exams

Example 20 Deleted for CBSE Board 2023 Exams

Example 21 Deleted for CBSE Board 2023 Exams

Example 22 Deleted for CBSE Board 2023 Exams

Example 23 Deleted for CBSE Board 2023 Exams

Example 24

Example 25

Example 26

Example 27

Example 28 Important

Example 29

Example 30 Important

Example 31

Example 32 Important

Example 33 Important

Example 34

Example 35 Important

Example 36

Example 37 Important

Example 38 Important

Example 39

Example 40 Important

Example 41 Important

Example 42 Important

Example 43 Important You are here

Example 44 Important

Example 45 Important Deleted for CBSE Board 2023 Exams

Example 46 Important Deleted for CBSE Board 2023 Exams

Example 47 Important

Example 48 Important

Example 49

Example 50 Important

Example 51

Chapter 6 Class 12 Application of Derivatives

Serial order wise

Last updated at April 19, 2021 by Teachoo

Example 43 A water tank has the shape of an inverted right circular cone with its axis vertical and vertex lowermost. Its semi-vertical angle is tan–1 (0.5). Water is poured into it at a constant rate of 5 cubic meter per hour. Find the rate at which the level of the water is rising at the instant when the depth of water in the tank is 4 m.Water tank is in shape of cone Let r be the radius of cone, h be the height of cone, & 𝜶 be the semi−vertical angle Given Semi-vertical angle is tan^(−1)(0.5) α=tan^(−1)(0.5) tan α =(0.5) 𝑟/ℎ = 0.5 𝑟/ℎ = 1/2 𝒓 = 𝒉/𝟐 Also, Water is poured at a constant rate of 5 cubic meter per hour 𝒅𝑽/𝒅𝒕=𝟓 𝒎^𝟑/𝒉𝒓 Where V is volume of cone Now, 𝑉=1/3 𝜋𝑟^2 ℎ 𝑉=1/3 𝜋(𝒉/𝟐)^2 ℎ 𝑉=1/3 𝜋(〖h/4〗^2 )ℎ 𝑽=(𝝅𝒉^𝟑)/𝟏𝟐 Differentiate w.r.t. t 𝑑𝑉/𝑑𝑡=𝑑((𝜋ℎ^3)/12)/𝑑𝑡 𝑑𝑉/𝑑𝑡=𝜋/12 . (𝑑ℎ^3)/𝑑𝑡 𝑑𝑉/𝑑𝑡=𝜋/12 . (𝑑ℎ^3)/𝑑ℎ .𝑑ℎ/𝑑𝑡 𝑑𝑉/𝑑𝑡=𝜋/12. 3ℎ^2 . 𝑑ℎ/𝑑𝑡 𝑑𝑉/𝑑𝑡=(𝜋ℎ^2)/4 . 𝑑ℎ/𝑑𝑡 Putting 𝒅𝑽/𝒅𝒕=𝟓 5 =(𝜋ℎ^2)/4 . 𝑑ℎ/𝑑𝑡 𝒅𝒉/𝒅𝒕=𝟐𝟎/(𝝅𝒉^𝟐 ) We need to find, Rate at which level of water is rising when depth is 4 m i.e. ├ 𝒅𝒉/𝒅𝒕┤|_(𝒉 = 𝟒 𝒎) Putting h = 4 m in (3) ├ 𝑑ℎ/𝑑𝑡┤|_(ℎ = 4𝑚)=20/(𝜋(ℎ)^2 )=20/16 × 1/𝜋=5/4 × 1/(22/7)=5/4 × 7/22=35/88 Hence, rate of change of water level is 𝟑𝟓/𝟖𝟖 m/hr.