




Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Examples
Example 2
Example 3
Example 4 Important
Example 5
Example 6
Example 7
Example 8 Important
Example 9 Important
Example 10
Example 11 Important
Example 12
Example 13 Important
Example 14
Example 15
Example 16 Important
Example 17
Example 18 Important
Example 19
Example 20 Important
Example 21 Important
Example 22
Example 23 Important
Example 24
Example 25 Important
Example 26 Important
Example 27
Example 28 Important
Example 29 Important You are here
Example 30 Important
Example 31 Important
Example 32 Important
Example 33 Important
Example 34 Important
Example 35
Example 36 Important
Example 37
Question 1 Deleted for CBSE Board 2024 Exams
Question 2 Deleted for CBSE Board 2024 Exams
Question 3 Deleted for CBSE Board 2024 Exams
Question 4 Important Deleted for CBSE Board 2024 Exams
Question 5 Deleted for CBSE Board 2024 Exams
Question 6 Deleted for CBSE Board 2024 Exams
Question 7 Deleted for CBSE Board 2024 Exams
Question 8 Deleted for CBSE Board 2024 Exams
Question 9 Deleted for CBSE Board 2024 Exams
Question 10 Deleted for CBSE Board 2024 Exams
Question 11 Deleted for CBSE Board 2024 Exams
Question 12 Deleted for CBSE Board 2024 Exams
Question 13 Important Deleted for CBSE Board 2024 Exams
Question 14 Important Deleted for CBSE Board 2024 Exams
Last updated at May 29, 2023 by Teachoo
Example 29 An Apache helicopter of enemy is flying along the curve given by 𝑦= 𝑥^2 + 7. A soldier, placed at (3, 7), wants to shoot down the helicopter when it is nearest to him. Find the nearest distance.Given curve y = x2 + 7 Let (𝑥,𝑦) be any point on parabola 𝑦=𝑥2+7 Let D be required Distance between (𝑥,𝑦) & (3 , 7) D = √((𝟑−𝒙)^𝟐+(𝟕 −𝒚)^𝟐 ) = √(9+𝑥^2−6𝑥+49+𝑦^2−14𝑦) = √(𝑥^2+𝑦^2−6𝑥−14𝑦+58) Since point (𝑥 , 𝑦) is on the parabola 𝑦=𝑥2+7 (𝒙 , 𝒚) will satisfy the equation of parabola Putting 𝑥 and 𝑦 in equation 𝒚=𝒙^𝟐+𝟕 Putting value of 𝑦=𝑥^2+7 D = √(𝑥^2+𝑦^2−6𝑥−14𝑦+58) D = √(𝑥^2+〖(𝑥^2+7)〗^2 − 6𝑥−14(𝑥^2+7)+58) D = √(𝑥^2+𝑥^4+49+14𝑥^2 − 6𝑥−14𝑥^2−98+58) D = √(𝒙^𝟒+𝒙^𝟐 −𝟔𝒙+𝟗) We need to minimize D, but D has a square root Which will be difficult to differentiate Let Z = D2 Z = 𝒙^𝟒+𝒙^𝟐 −𝟔𝒙+𝟗 Since D is positive, D is minimum if D2 is minimum So, we minimize Z = D2 Differentiating Z Z =𝑥^4+𝑥^2 −6𝑥+9 Differentiating w.r.t. h Z’ = 𝑑(𝑥^4 + 𝑥^2 − 6𝑥 + 9)/𝑑ℎ Z’ = 4𝑥^3+2𝑥 −6 Putting Z’ = 0 4𝑥^3+2𝑥 −6=0 Factorizing Z’ Z’(1) = 4(1)3 + 2(1) − 6 = 4 + 2 − 6 = 0 Hence, (x – 1) is a factor of 4x3 − 2x − 6 Thus, 4𝑥^3+2𝑥 −6=0 (𝑥−1)(4𝑥^2+4𝑥+6)=0 2x2 + 2x + 3 = 0 x = (−2 ± √(4 − 4(2)(3)))/4 = (−2 ± √(−𝟐𝟎))/4 This is not possible as there are no real roots. Checking sign of 𝒁^′′ " " 𝑑𝑍/𝑑𝑥=4𝑥^3+2𝑥 −6 Differentiating again w.r.t x (𝑑^2 𝑍)/(𝑑𝑥^2 )=4 × 3𝑥^2+2 (𝑑^2 𝑍)/(𝑑𝑥^2 )=12𝑥^2+2 Since 𝐙^′′ > 0 for x = 1 ∴ Z is minimum when x = 1 Thus, D is Minimum at x = 1 Finding Minimum value of D D = √(𝒙^𝟒+𝒙^𝟐 −𝟔𝒙+𝟗) Putting x = 1 D = √(1^4+1^2−6(1)+9) D = √𝟓 Hence, shortest distance is√𝟓