



Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Examples
Example 2
Example 3
Example 4 Important
Example 5
Example 6
Example 7
Example 8 Important
Example 9 Important
Example 10
Example 11 Important
Example 12
Example 13 Important
Example 14
Example 15
Example 16 Important
Example 17
Example 18 Important
Example 19
Example 20 Important
Example 21 Important
Example 22
Example 23 Important
Example 24
Example 25 Important
Example 26 Important
Example 27
Example 28 Important
Example 29 Important
Example 30 Important
Example 31 Important
Example 32 Important
Example 33 Important
Example 34 Important
Example 35 You are here
Example 36 Important
Example 37
Question 1 Deleted for CBSE Board 2024 Exams
Question 2 Deleted for CBSE Board 2024 Exams
Question 3 Deleted for CBSE Board 2024 Exams
Question 4 Important Deleted for CBSE Board 2024 Exams
Question 5 Deleted for CBSE Board 2024 Exams
Question 6 Deleted for CBSE Board 2024 Exams
Question 7 Deleted for CBSE Board 2024 Exams
Question 8 Deleted for CBSE Board 2024 Exams
Question 9 Deleted for CBSE Board 2024 Exams
Question 10 Deleted for CBSE Board 2024 Exams
Question 11 Deleted for CBSE Board 2024 Exams
Question 12 Deleted for CBSE Board 2024 Exams
Question 13 Important Deleted for CBSE Board 2024 Exams
Question 14 Important Deleted for CBSE Board 2024 Exams
Last updated at June 12, 2023 by Teachoo
Example 35 A circular disc of radius 3 cm is being heated. Due to expansion, its radius increases at the rate of 0.05 cm/s. Find the rate at which its area is increasing when radius is 3.2 cm.Let r be the radius of circle . & A be the Area of circle. Given that Radius increases at the rate of 0.05 cm/s Thus, 𝒅𝒓/𝒅𝒕 = 0.05 cm /sec We need to find rate of change of area of circle w. r. t time when r = 3.2 cm i.e. we need to find 𝒅𝑨/𝒅𝒕 when r = 3.2 cm We know that Area of circle = πr2 A = πr2 Differentiating w.r.t time 𝒅𝑨/𝒅𝒕 = 𝒅(𝝅𝒓𝟐)/𝒅𝒕 𝑑𝐴/𝑑𝑡 = π 𝑑(𝑟2)/𝑑𝑡 𝑑𝐴/𝑑𝑡 = π 𝑑(𝑟2)/𝑑𝑡 × 𝒅𝒓/𝒅𝒓 𝑑𝐴/𝑑𝑡 = π 𝒅(𝒓𝟐)/𝒅𝒓 × 𝑑𝑟/𝑑𝑡 𝑑𝐴/𝑑𝑡 = π. 2r . 𝑑𝑟/𝑑𝑡 𝑑𝐴/𝑑𝑡 = 2πr . 𝒅𝒓/𝒅𝒕 𝑑𝐴/𝑑𝑡 = 2πr . 0.05 𝑑𝐴/𝑑𝑡 = 0.1 × πr When 𝒓 = 3.2 cm ├ 𝑑𝐴/𝑑𝑡┤|_(𝑟 =10) = 0.1 × π × 3.2 ├ 𝑑𝐴/𝑑𝑡┤|_(𝑟 =10) = 0.320π Since area is in cm2 & time is in seconds 𝒅𝑨/𝒅𝒕 = 0.320π cm2/s Hence, Area is increasing at the rate of 0.320π cm2/s when r = 0.32 cm