Ā  Ā  Example 23 - Find shortest distance of (0, c) from parabola - Examples

part 2 - Example 23 - Examples - Serial order wise - Chapter 6 Class 12 Application of Derivatives
part 3 - Example 23 - Examples - Serial order wise - Chapter 6 Class 12 Application of Derivatives
part 4 - Example 23 - Examples - Serial order wise - Chapter 6 Class 12 Application of Derivatives
part 5 - Example 23 - Examples - Serial order wise - Chapter 6 Class 12 Application of Derivatives part 6 - Example 23 - Examples - Serial order wise - Chapter 6 Class 12 Application of Derivatives

Ā 

Share on WhatsApp

Transcript

Example 23 Find the shortest distance of the point (0, c) from the parabola š‘¦=š‘„2, where 0 ≤ c ≤ 5. Let (ā„Ž ,š‘˜) be any point on parabola š‘¦=š‘„2 Let D be required Distance between (ā„Ž , š‘˜) & (0 , š‘) D = √((0āˆ’ā„Ž)^2+(š‘ āˆ’š‘˜)^2 ) D = √((āˆ’ā„Ž)^2+(š‘ āˆ’š‘˜)^2 ) D = √(š’‰^šŸ+(š’„ āˆ’š’Œ)^šŸ ) Also, Since point (ā„Ž , š‘˜) is on the parabola š‘¦=š‘„2 (š’‰ , š’Œ) will satisfy the equation of parabola Putting š‘„=ā„Ž , š‘¦=š‘˜ in equation š’Œ=š’‰^šŸ Putting value of š‘˜=ā„Ž^2 D = √(ā„Ž^2+(š‘ āˆ’š‘˜)^2 ) D = √(š’Œ+(š’„āˆ’š’Œ)^šŸ ) We need to minimize D, but D has a square root Which will be difficult to differentiate Let Z = D2 Z = š‘˜+(š‘āˆ’š‘˜)^2 Since D is positive, D is minimum if D2 is minimum So, we minimize Z = D2 Differentiating Z Z =š‘˜+(š‘āˆ’š‘˜)^2 Differentiating w.r.t. k Z’ = š‘‘(š‘˜ + (š‘ āˆ’ š‘˜)^2 )/š‘‘š‘˜ Z’ = 1 + 2 (c āˆ’ k) Ɨ (c āˆ’ k)’ Z’ = 1 + 2 (c āˆ’ k) Ɨ (0 āˆ’ 1) Z’ = 1 āˆ’ 2 (c āˆ’ k) Z’ = 1 āˆ’ 2c āˆ’ 2k Putting Z’ = 0 1 āˆ’ 2c āˆ’ 2k = 0 2k = 2c āˆ’ 1 k = (šŸš’„ āˆ’ šŸ)/šŸ Now, checking sign of š’^′′ " " š‘‘š‘/š‘‘š‘˜=4š‘˜āˆ’2š‘ Differentiating again w.r.t k (š‘‘^2 š‘)/(š‘‘ā„Ž^2 ) = 4 āˆ’0 (š’…^šŸ š’)/(š’…š’‰^šŸ ) = šŸ’ Since š™^′′ > 0 for k = (2š‘ āˆ’ 1)/2 ∓ Z is minimum when k = (2š‘ āˆ’ 1)/2 Thus, D is Minimum at š’Œ=(šŸš’„ āˆ’ šŸ)/šŸ Finding Minimum value of D D = √(š‘˜+(š‘āˆ’š‘˜)^2 ) Putting š‘˜=(2š‘ āˆ’ 1)/2 D = √(((2š‘ āˆ’ 1)/2)+(š‘āˆ’((2š‘ āˆ’ 1)/2))^2 ) D = √(((2š‘ āˆ’ 1)/2)+((2š‘ āˆ’ 2š‘ āˆ’ 1)/2)^2 ) D = √(((2š‘ āˆ’ 1)/2)+((āˆ’1)/2)^2 ) D = √(((2š‘ āˆ’ 1)/2)+1/4) D = √(š‘āˆ’1/2+1/4) D = √(š‘āˆ’1/4) D = √(4š‘ āˆ’ 1)/2 Hence, shortest distance is √(šŸ’š’„ āˆ’ šŸ)/šŸ

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo