Example 20 - Find local maximum and local minimum values - Examples

part 2 - Example 20 - Examples - Serial order wise - Chapter 6 Class 12 Application of Derivatives
part 3 - Example 20 - Examples - Serial order wise - Chapter 6 Class 12 Application of Derivatives
part 4 - Example 20 - Examples - Serial order wise - Chapter 6 Class 12 Application of Derivatives
part 5 - Example 20 - Examples - Serial order wise - Chapter 6 Class 12 Application of Derivatives

Share on WhatsApp

Transcript

Example 20 Find local maximum and local minimum values of the function f given by f (𝑥)=3𝑥4 + 4𝑥3 – 12𝑥2 + 12f (𝑥)=3𝑥4 + 4𝑥3 – 12𝑥2 + 12 Finding f’ (𝒙) f’ (𝑥)=𝑑(3𝑥4 + 4𝑥3 – 12𝑥2 + 12)/𝑑𝑥 f’ (𝑥)=12𝑥^3+12𝑥^2 – 24𝑥 "+ 0" f’ (𝑥)=12(𝑥^3+𝑥^2−2𝑥) f’ (𝑥)=12𝑥(𝑥^2+𝑥−2) f’ (𝑥)=12𝑥 (𝑥^2+2𝑥−𝑥−2) f’ (𝑥)=12𝑥 (𝑥(𝑥+2)−1(𝑥+2)) f’ (𝑥)=𝟏𝟐𝒙 (𝒙−𝟏)(𝒙+𝟐) Putting f’ (𝒙)=𝟎 12𝑥 (𝑥−1)(𝑥+2)=0 𝑥 (𝑥−1)(𝑥+2)=0 So, 𝒙=𝟎,𝑥=𝟏,& 𝑥=−𝟏 Finding f’’(𝒙) f ’(𝑥)=12(𝑥^3+𝑥^2−2𝑥) f ’’(𝑥)=12𝑑(𝑥^3 + 𝑥^2 − 2𝑥)/𝑑𝑥 f ’’(𝑥)=𝟏𝟐(𝟑𝒙^𝟐+𝟐𝒙−𝟐) At 𝒙=𝟎 f ’’(0)=12(3(0)^2+2(0)−2)= 32 (0+0 −2)= – 64 < 0 Since f’’(𝑥)<0 at 𝑥=0 ∴ 𝑥 = 0 is point of local maxima Thus, f(𝑥) is maximum at 𝑥=0 At 𝒙=𝟏 f’’(1)=12(3(1)^2+2(1)−2)= 12 (3+2−2) = 36 > 0 Since f’’(𝑥)>0 at 𝑥=1 ∴ 𝑥 = 1 is point of local minima Thus, f(𝑥) is minimum at 𝑥=1 At 𝒙=−𝟐 f’’(−2)=12(3(−2)^2+2(−2)−2)= 12 (12−4−2)= 72 > 0 Since f’’(𝑥)>0 at 𝑥=−2 ∴ 𝑥 = −2 is point of local minima Thus, f(𝑥) is minimum at 𝑥=−2 Finding local minimum and maximum value f’ (𝑥)=𝟏𝟐𝒙 (𝒙−𝟏)(𝒙+𝟐) Local maximum value of f (𝑥) at 𝑥=0 f (0)=3(0)4 + 4(0)3 – 12(0)2 + 12 = 0 + 0 – 0 + 12 = 12 Local minimum value of f (𝑥) at 𝑥=1 f (1)=3(1)4 + 4(1)3 – 12(1)2 + 12 = 3 + 4 – 12 + 12 = 7 Local Minimum value of f (𝑥) at 𝑥=−2 f (−2)=3(−2)4 + 4(−2)3 – 12(−2)2 + 12 = 48 – 32 – 48 + 12 = – 20

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo