Example 12 - Find intervals where f(x) = sin 3x is decreasing - Examples

part 2 - Example 12 - Examples - Serial order wise - Chapter 6 Class 12 Application of Derivatives
part 3 - Example 12 - Examples - Serial order wise - Chapter 6 Class 12 Application of Derivatives
part 4 - Example 12 - Examples - Serial order wise - Chapter 6 Class 12 Application of Derivatives
part 5 - Example 12 - Examples - Serial order wise - Chapter 6 Class 12 Application of Derivatives part 6 - Example 12 - Examples - Serial order wise - Chapter 6 Class 12 Application of Derivatives part 7 - Example 12 - Examples - Serial order wise - Chapter 6 Class 12 Application of Derivatives part 8 - Example 12 - Examples - Serial order wise - Chapter 6 Class 12 Application of Derivatives

Share on WhatsApp

Transcript

Example 12 Find intervals in which the function given by f (x) = sin 3x, x, ∈ [0, πœ‹/2] is (a) increasing (b) decreasing. f(π‘₯) = sin 3π‘₯ where π‘₯ ∈ [0 ,πœ‹/2] Finding f’(x) f’(π‘₯) = 𝑑(sin⁑3π‘₯ )/𝑑π‘₯ f’(π‘₯) = cos 3π‘₯ Γ— 3 f’(𝒙) = 3. cos 3𝒙 Putting f’(𝒙) = 0 3 cos 3π‘₯ = 0 cos 3π‘₯ = 0 We know that cos ΞΈ = 0 When ΞΈ = πœ‹/2 & 3πœ‹/2 So, for cos 3𝒙 = 0 3π‘₯ = πœ‹/2 & 3π‘₯ = 3πœ‹/2 π‘₯ = πœ‹/(2 Γ—3) & π‘₯ = 3πœ‹/(2 Γ— 3) 𝒙 = 𝝅/πŸ” & 𝒙 = 𝝅/𝟐 Since π‘₯ = πœ‹/6 ∈ [𝟎 ,𝝅/𝟐] & π‘₯ = πœ‹/2 ∈ [𝟎,𝝅/𝟐] ∴ Both values of π‘₯ are valid Plotting points on number line So, point π‘₯ = πœ‹/6 divides the interval into two disjoint intervals [0 ,πœ‹/6) and (πœ‹/6, πœ‹/2] Checking sign of f’(𝒙) f’(π‘₯) = 3. cos 3π‘₯ Case 1: For 𝒙 ∈ (𝟎 ,𝝅/πŸ”) 0<π‘₯<πœ‹/6 3 Γ— 0<3π‘₯<3πœ‹/6 𝟎<πŸ‘π’™<𝝅/𝟐 So when π‘₯ ∈ (0 ,πœ‹/6), then 3π‘₯ ∈ (0 , πœ‹/2) We know that cos 𝜽>𝟎 for 𝜽 ∈ (𝟎 , 𝝅/𝟐) cos 3x >0 for 3x ∈ (0 , πœ‹/2) cos 3x >0 for x ∈ (0 , πœ‹/6) 3 cos 3x >0 for x ∈ (0 , πœ‹/6) 𝒇′(𝒙)>𝟎 for x ∈ (0 , πœ‹/6) Since f’(0) = 3 and f’(𝝅/πŸ”) = 0 Therefore, f’(x) β‰₯ 0 for π‘₯ ∈ [0 , πœ‹/6] Thus, f(x) is increasing for π‘₯ ∈ [0 , πœ‹/6] Case 2: For 𝒙 ∈ (𝝅/πŸ”, 𝝅/𝟐) πœ‹/6<π‘₯<πœ‹/2 3 Γ— πœ‹/6<3π‘₯<3πœ‹/2 𝝅/𝟐<πŸ‘π’™<πŸ‘π…/𝟐 So when π‘₯ ∈(πœ‹/6 , πœ‹/2), then 3π‘₯ ∈ (πœ‹/2 , 3πœ‹/2) We know that, cos πœƒ<0 for πœƒ ∈ (πœ‹/2 , 3πœ‹/2) cos 3π‘₯<0 for 3π‘₯ ∈ (πœ‹/2 , 3πœ‹/2) cos 3π‘₯<0 for π‘₯ ∈ (πœ‹/6 , πœ‹/2) 3 cos 3π‘₯<0 for π‘₯ ∈ (πœ‹/6 , πœ‹/2) fβ€˜(x) <𝟎 for π‘₯ ∈ (πœ‹/6 , πœ‹/2) Since f’(𝝅/πŸ”) = 0 and f’(𝝅/𝟐) = 0 Therefore f’(x) ≀ 0 for π‘₯ ∈ [πœ‹/6,πœ‹/2] Thus, f(x) is decreasing for π‘₯ ∈ [πœ‹/6,πœ‹/2] Thus, f(x) is increasing for 𝒙 ∈ [𝟎 , 𝝅/πŸ”] & f(x) is decreasing for 𝒙 ∈ [𝝅/πŸ” , 𝝅/𝟐]

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo