Ex 7.3, 20 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.3, 20 Integrate the function cosβ‘2π₯/(cosβ‘γπ₯ γ+ sinβ‘π₯ )^2 β«1βcosβ‘2π₯/(cosβ‘π₯ + sinβ‘π₯ )^2 =β«1β(cos^2β‘π₯ β sin^2β‘π₯)/(cosβ‘π₯ + sinβ‘π₯ )^2 ππ₯ =β«1β(cosβ‘π₯ β sinβ‘π₯ )(cosβ‘π₯ + sinβ‘π₯ )/(cosβ‘π₯ + sinβ‘π₯ )^2 ππ₯ =β«1β(cosβ‘π₯ β sinβ‘π₯)/(cosβ‘π₯ + sinβ‘π₯ ) ππ₯ Let cosβ‘π₯+sinβ‘π₯=π‘ Differentiating w.r.t. x (πππ β‘2π=γπππ γ^2β‘πβγπ ππγ^2β‘π) βsinβ‘π₯+cosβ‘π₯=ππ‘/ππ₯ (cosβ‘π₯βsinβ‘π₯ )ππ₯=ππ‘ ππ₯=1/((cosβ‘π₯ β sinβ‘π₯ ) ) ππ‘ Thus, our equation becomes =β«1β((cosβ‘π₯ β sinβ‘π₯ ))/π‘ Γππ‘/(cosβ‘π₯ β sinβ‘π₯ ) =β«1β1/π‘ ππ‘ =logβ‘|π‘|+πΆ Putting value of π‘=πππ β‘π₯+π ππβ‘π₯ =πππβ‘|πππβ‘π+πππβ‘π |+πͺ
Ex 7.3
Ex 7.3, 2
Ex 7.3, 3 Important
Ex 7.3, 4 Important
Ex 7.3, 5
Ex 7.3, 6 Important
Ex 7.3, 7
Ex 7.3, 8
Ex 7.3, 9 Important
Ex 7.3, 10 Important
Ex 7.3, 11
Ex 7.3, 12
Ex 7.3, 13 Important
Ex 7.3, 14
Ex 7.3, 15
Ex 7.3, 16 Important
Ex 7.3, 17
Ex 7.3, 18 Important
Ex 7.3, 19 Important
Ex 7.3, 20 Important You are here
Ex 7.3, 21
Ex 7.3, 22 Important
Ex 7.3, 23 (MCQ)
Ex 7.3, 24 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo