Check sibling questions


Transcript

Ex 7.3, 16 ∫1β–’γ€–tan^4 π‘₯γ€— 𝑑π‘₯ ∫1β–’γ€–tan^4 π‘₯γ€— 𝑑π‘₯=∫1β–’γ€–tan^2 π‘₯ .tan^2 π‘₯γ€— 𝑑π‘₯ =∫1β–’γ€–(sec^2⁑π‘₯βˆ’ 1) tan^2⁑π‘₯ γ€— 𝑑π‘₯ =∫1β–’(sec^2⁑π‘₯.tan^2⁑π‘₯βˆ’tan^2⁑π‘₯ ) 𝑑π‘₯ =∫1β–’γ€–tan^2⁑π‘₯.sec^2⁑π‘₯ γ€— 𝑑π‘₯βˆ’βˆ«1β–’γ€–tan^2 π‘₯γ€— 𝑑π‘₯ Solving both these integrals separately We know that γ€–π‘‘π‘Žπ‘›γ€—^2 πœƒ=〖𝑠𝑒𝑐〗^2β‘γ€–πœƒβˆ’1γ€— ∫1▒〖〖𝒕𝒂𝒏〗^πŸβ‘π’™.〖𝒔𝒆𝒄〗^πŸβ‘π’™ γ€— 𝒅𝒙 Let tan π‘₯=𝑑 sec^2⁑π‘₯=𝑑𝑑/𝑑π‘₯ 𝑑π‘₯=1/sec^2⁑π‘₯ . 𝑑𝑑 Now, ∫1β–’tan^2⁑π‘₯ .sec^2⁑π‘₯.𝑑π‘₯ =∫1▒𝑑^2 .sec^2⁑π‘₯. 1/sec^2⁑π‘₯ .𝑑𝑑 =∫1▒𝑑^2 . 𝑑𝑑 =𝑑^(2 + 1)/(2 + 1) + C =𝑑^3/3+𝐢 Putting value of 𝑑=π‘‘π‘Žπ‘›β‘π‘₯ =tan^3⁑π‘₯/3+𝐢1 ∫1▒〖〖𝒕𝒂𝒏〗^𝟐 𝒙〗 𝒅𝒙 =∫1β–’(sec^2⁑π‘₯βˆ’1) 𝑑π‘₯ =∫1β–’sec^2⁑π‘₯ 𝑑π‘₯βˆ’βˆ«1β–’1⁑〖.𝑑π‘₯γ€— =tan⁑π‘₯βˆ’π‘₯+𝐢2 "As" ∫1β–’γ€–π‘₯^𝑛 𝑑π‘₯=π‘₯^(𝑛+1)/(𝑛+1)+𝐢〗 & ∫1β–’sec^2⁑π‘₯ 𝑑π‘₯=tan⁑π‘₯+𝐢 Now, ∫1β–’γ€–tan^4 π‘₯γ€— 𝑑π‘₯=∫1β–’γ€–tan^2 π‘₯ .sec^2 π‘₯γ€— 𝑑π‘₯βˆ’βˆ«1β–’γ€–tan^2 π‘₯γ€— 𝑑π‘₯ =tan^3⁑π‘₯/3+𝐢1βˆ’(tan⁑π‘₯βˆ’π‘₯+𝐢2) =tan^3⁑π‘₯/3 βˆ’tan⁑π‘₯+π‘₯+𝐢1βˆ’πΆ2 =〖𝒕𝒂𝒏〗^πŸ‘β‘π’™/πŸ‘ βˆ’π’•π’‚π’β‘π’™+𝒙+π‘ͺ (Where 𝐢=𝐢1βˆ’πΆ2)

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo