Ex 7.3, 9 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.3, 9 Integrate (πππ π₯)/(1 + πππ π₯) β«1βγ(πππ π₯)/(1 + πππ π₯) " " ππ₯γ = β«1β((cosβ‘π₯ + 1 β 1)/(1 + cosβ‘π₯ )) ππ₯ =β«1β((1 + cosβ‘π₯ β 1)/(1 + cosβ‘π₯ )) ππ₯ =β«1β((1 + cosβ‘π₯)/(1 + cosβ‘π₯ ) β 1/(1 + cosβ‘π₯ )) ππ₯ =β«1βγ1β1/(1 + cosβ‘π₯ )γ ππ₯ =β«1β1 ππ₯ββ«1βπ/(π + πππβ‘π ) ππ₯ =β«1β1 ππ₯ββ«1β1/(π γπππγ^πβ‘γπ/πγ ) ππ₯ =β«1β1 ππ₯ββ«1β1/2 sec^2β‘γπ₯/2γ ππ₯ =β«1β1 ππ₯β1/2 β«1βsec^2β‘γπ₯/2γ ππ₯ =π₯β 1/2 γtan γβ‘γπ₯/2γ/(1/2) +πΆ =π₯β 2/2 γtan γβ‘γπ₯/2γ +πΆ =πβ γπππ§ γβ‘γπ/πγ +πͺ β«1βsec^2β‘(ππ₯+π) ππ₯=π‘ππβ‘(ππ₯ + π)/π +πΆ We know that cos 2π=2 cos^2β‘γπβ1γ cosβ‘2π+1=2 cos^2β‘π Replacing π by π₯/2 cosβ‘2(π₯/2)+1=2 cos^2β‘γπ₯/2γ cosβ‘π₯+1=2 cos^2β‘γπ₯/2γ
Ex 7.3
Ex 7.3, 2
Ex 7.3, 3 Important
Ex 7.3, 4 Important
Ex 7.3, 5
Ex 7.3, 6 Important
Ex 7.3, 7
Ex 7.3, 8
Ex 7.3, 9 Important You are here
Ex 7.3, 10 Important
Ex 7.3, 11
Ex 7.3, 12
Ex 7.3, 13 Important
Ex 7.3, 14
Ex 7.3, 15
Ex 7.3, 16 Important
Ex 7.3, 17
Ex 7.3, 18 Important
Ex 7.3, 19 Important
Ex 7.3, 20 Important
Ex 7.3, 21
Ex 7.3, 22 Important
Ex 7.3, 23 (MCQ)
Ex 7.3, 24 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo