Ex 7.3, 5 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.3, 5 Integrate sin^3β‘π₯ cos^3 π₯ β«1βγsin^3β‘π₯ cos^3 π₯γ ππ₯ =β«1βγπ ππβ‘π₯. sin^2β‘π₯ cos^3 π₯γ ππ₯ =β«1βγπ ππβ‘π₯ (1βcos^2β‘π₯ ) cos^3 π₯γ ππ₯ =β«1βγ(1βcos^2β‘π₯ ) cos^3 π₯γ. π ππβ‘π₯ ππ₯ Let cosβ‘π₯=π‘ Differentiating w.r.t.x βsinβ‘π₯=ππ‘/ππ₯ ππ₯=ππ‘/(βsinβ‘π₯ ) (γπ ππγ^2β‘π=1βγπππ γ^2β‘π) β¦(1) Thus, our equation becomes β«1βγsin^2β‘π₯ cos^3 π₯γ ππ₯ =β«1βγ(1βcos^2β‘π₯ ) cos^3 π₯γ. π ππβ‘π₯ ππ₯" " =β«1βγ(1βπ‘^2 ) π‘^3 γ. π ππβ‘π₯Γ1/(βsinβ‘π₯ ) ππ‘" " =β«1βγβ(1βπ‘^2 ) π‘^3 γ ππ‘" " =ββ«1βγ(π‘^3βπ‘^5 ) γ ππ‘" " =β[β«1βπ‘^3 ππ‘ββ«1βπ‘^5 ππ‘] =β[π‘^(3 + 1)/(3 + 1) β π‘^(5 + 1)/(5 + 1)]+πΆ =β[π‘^4/4 β π‘^6/6]+πΆ =γβπ‘γ^4/4 + π‘^6/6+πΆ =π‘^6/6 β π‘^4/4 +πΆ Putting back value of π‘=πππ β‘π₯ =(γπππγ^π π)/π β (γπππγ^π π)/π +πͺ
Ex 7.3
Ex 7.3, 2
Ex 7.3, 3 Important
Ex 7.3, 4 Important
Ex 7.3, 5 You are here
Ex 7.3, 6 Important
Ex 7.3, 7
Ex 7.3, 8
Ex 7.3, 9 Important
Ex 7.3, 10 Important
Ex 7.3, 11
Ex 7.3, 12
Ex 7.3, 13 Important
Ex 7.3, 14
Ex 7.3, 15
Ex 7.3, 16 Important
Ex 7.3, 17
Ex 7.3, 18 Important
Ex 7.3, 19 Important
Ex 7.3, 20 Important
Ex 7.3, 21
Ex 7.3, 22 Important
Ex 7.3, 23 (MCQ)
Ex 7.3, 24 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo