Ex 7.3, 4 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.3, 4 sin3 (2π₯ + 1) We know that sinβ‘3π=3 sinβ‘πβ4 sin^3β‘π 4 sin^3β‘π=3 sinβ‘πβsinβ‘3π sin^3β‘π=(3 sinβ‘π β sinβ‘3π)/4 Replace π by ππ+π sin^3β‘(2π₯+1)=(3 sinβ‘(2π₯ + 1) β sinβ‘3(2π₯ + 1))/4 sin^3β‘(2π₯+1)=(3 sinβ‘(2π₯ + 1) β sinβ‘(6π₯ + 3))/4 Thus, our equation becomes . β«1βγsin3 (2π₯+1) γ ππ₯ =β«1β(3 sinβ‘(2π₯ + 1) β sinβ‘(6π₯ + 3))/4 ππ₯ =1/4 β«1β(3 sinβ‘(2π₯+1)βsinβ‘(6π₯+3) ) ππ₯ =1/4 [3β«1βsinβ‘(2π₯+1) ππ₯ββ«1βsinβ‘(6π₯+3) ππ₯] =1/4 [3•Γ1/2 (βcosβ‘(2π₯+1) )β1/6 (βcosβ‘(6π₯+3)+πΆ)" " ] =1/4 [(β3)/2 cosβ‘(2π₯+1)+1/6 cosβ‘(6π₯+3) ]+πΆ =(β3)/8 cosβ‘(2π₯+1)+1/24 πππβ‘π(ππ+π)+πΆ β«1βsinβ‘(ππ₯+π) ππ₯=βγπππ γβ‘(ππ₯ + π)/π +πΆ We know that πππ β‘3π=4 γπππ γ^3β‘πβ3 πππ β‘π Replace π by 2π₯+1 πππ β‘3(2π₯+1)=4 γπππ γ^3β‘(2π₯+1)β3 πππ β‘(2π₯+1) =(β3)/8 cosβ‘(2π₯+1)+1/24 [π γπππγ^πβ‘(ππ+π)βπ πππβ‘(ππ+π) ]+πΆ =(β3)/8 cosβ‘(2π₯+1)+4/24 cos^3β‘(2π₯+1)β3/24 cosβ‘(2π₯+1)+πΆ =(β3)/8 cosβ‘(2π₯+1)+1/6 cos^3β‘(2π₯+1)β1/8 cosβ‘(2π₯+1)+πΆ =(β3)/8 cosβ‘(2π₯+1)β1/8 cosβ‘(2π₯+1)+1/6 cos^3β‘(2π₯+1)+πΆ =(β4)/8 cosβ‘(2π₯+1)+1/6 cos^3β‘(2π₯+1)+πΆ =(βπ)/π πππβ‘(ππ+π)+π/π γπππγ^πβ‘(ππ+π)+πͺ
Ex 7.3
Ex 7.3, 2
Ex 7.3, 3 Important
Ex 7.3, 4 Important You are here
Ex 7.3, 5
Ex 7.3, 6 Important
Ex 7.3, 7
Ex 7.3, 8
Ex 7.3, 9 Important
Ex 7.3, 10 Important
Ex 7.3, 11
Ex 7.3, 12
Ex 7.3, 13 Important
Ex 7.3, 14
Ex 7.3, 15
Ex 7.3, 16 Important
Ex 7.3, 17
Ex 7.3, 18 Important
Ex 7.3, 19 Important
Ex 7.3, 20 Important
Ex 7.3, 21
Ex 7.3, 22 Important
Ex 7.3, 23 (MCQ)
Ex 7.3, 24 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo