Ex 7.10, 12 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.10, 12 By using the properties of definite integrals, evaluate the integrals: β«_0^πβ(π₯ ππ₯)/(1 + sinβ‘π₯ ) ππ₯ Let I=β«_0^πβπ₯/(1+ sinβ‘π₯ ) ππ₯ β΄ I=β«_0^πβ(π β π₯)/(1+ sinβ‘π₯ ) ππ₯ Adding (1) and (2) i.e. (1) + (2) I+I=β«_0^πβ( π₯)/(1 + sinβ‘π₯ ) ππ₯+β«_0^πβ( π β π₯)/(1 + sinβ‘π₯ ) ππ₯ 2I=β«_0^πβ( π₯ + π β π₯)/(1 + sinβ‘π₯ ) ππ₯ 2I=β«_0^πβ( π)/(1 + sinβ‘π₯ ) ππ₯ I=π/2 β«_0^πβ( 1)/(1 + sinβ‘π₯ ) ππ₯ Multiplying and dividing by (1βsinβ‘π₯ ) I=π/2 β«_0^πβγ( 1)/(1 + sinβ‘π₯ ) Γ (1 β sinβ‘π₯)/(1 β sinβ‘π₯ )γ . ππ₯ I=π/2 β«_0^πβ(1 β sinβ‘π₯)/(1 β sin^2β‘π₯ ) ππ₯ I=π/2 β«_0^πβ(1 β sinβ‘π₯)/( γcos γ^2β‘π₯ ) ππ₯ I=π/2 β«_0^πβ[1/cos^2β‘π₯ βsinβ‘π₯/( γcos γ^2β‘π₯ )] ππ₯ I=π/2 β«_0^πβ[sec^2β‘π₯βsinβ‘π₯/(cosβ‘π₯ .γ cosγβ‘π₯ )] ππ₯ I=π/2 β«_0^πβ[sec^2β‘π₯βtanβ‘γπ₯ secβ‘π₯ γ ] ππ₯ I=π/2 [[tanβ‘π₯ ]_0^πβ[secβ‘π₯ ]_0^π ] I=π/2 [[π‘ππ(π)βπ‘ππ(0)]β[π ππ(π)βπ ππ(0)]] I=π/2 [[0β0]β[β1β1]] I=π/2 [0β(β2)] I=π/2 [2] π=π
Ex 7.10
Ex 7.10, 2
Ex 7.10, 3 Important
Ex 7.10, 4
Ex 7.10, 5 Important
Ex 7.10, 6
Ex 7.10,7 Important
Ex 7.10,8 Important
Ex 7.10, 9
Ex 7.10, 10 Important
Ex 7.10, 11 Important
Ex 7.10, 12 Important You are here
Ex 7.10, 13
Ex 7.10, 14
Ex 7.10, 15
Ex 7.10, 16 Important
Ex 7.10, 17
Ex 7.10, 18 Important
Ex 7.10, 19
Ex 7.10, 20 (MCQ) Important
Ex 7.10, 21 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo