Ex 7.10, 10 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.10, 10 By using the properties of definite integrals, evaluate the integrals : β«_0^(π/2)βγ (2 logβ‘sinβ‘π₯ βlogβ‘sinβ‘2π₯ ) γ ππ₯ Let I1=β«_0^(π/2)βγ (2 logβ‘sinβ‘π₯ βlogβ‘sinβ‘2π₯ ) γ ππ₯ I1= β«_0^(π/2)βγ [2 logβ‘sinβ‘π₯ βπππ(2 sinβ‘γπ₯ cosβ‘π₯ γ )] γ ππ₯ I1= β«_0^(π/2)βγ [2 logβ‘sinβ‘π₯ βlogβ‘2βlogβ‘sinβ‘γπ₯βlogβ‘cosβ‘π₯ γ ] γ ππ₯ I1= β«_0^(π/2)βγ [logβ‘sinβ‘π₯ βπππ2βlogβ‘cosβ‘π₯ ] γ ππ₯ I1= β«_0^(π/2)βlogβ‘sinβ‘γπ₯ ππ₯γ ββ«_0^(π/2)βγlogβ‘2ππ₯ββ«_0^(π/2)βlogβ‘cosβ‘γπ₯ ππ₯γ γ Solving I2 I2=β«_0^(π/2)βlogβ‘cosβ‘γπ₯ ππ₯γ β΄ I2= β«_0^(π/2)βlogβ‘πππ (π/2βπ₯)ππ₯ I2=β«_0^(π/2)βlogβ‘sinβ‘γπ₯ ππ₯γ Put the value of I2 in (1) i.e. I1 β΄ I1= β«_0^(π/2)βlogβ‘sinβ‘γπ₯ ππ₯γ ββ«_0^(π/2)βγlog 2γβ‘ππ₯ ββ«_π^(π /π)βπ₯π¨π β‘ππ¨π¬β‘γπ π πγ I1= β«_0^(π/2)βlogβ‘sinβ‘γπ₯ ππ₯γ ββ«_0^(π/2)βγlog 2γβ‘ππ₯ ββ«_π^(π /π)βπππβ‘π¬π’π§β‘γπ π πγ I1= β β«_0^(π/2)βγlog 2γβ‘ππ₯ I1= β log 2β«_0^(π/2)βππ₯ I1= β log 2[π₯]_0^(π/2) I1= β log 2[π/2β0] I1= β log 2Γπ/2 I1= logβ‘γγ (2)γ^(β1) γ [π/2] I1= π /π π₯π¨π (π/π)
Ex 7.10
Ex 7.10, 2
Ex 7.10, 3 Important
Ex 7.10, 4
Ex 7.10, 5 Important
Ex 7.10, 6
Ex 7.10,7 Important
Ex 7.10,8 Important
Ex 7.10, 9
Ex 7.10, 10 Important You are here
Ex 7.10, 11 Important
Ex 7.10, 12 Important
Ex 7.10, 13
Ex 7.10, 14
Ex 7.10, 15
Ex 7.10, 16 Important
Ex 7.10, 17
Ex 7.10, 18 Important
Ex 7.10, 19
Ex 7.10, 20 (MCQ) Important
Ex 7.10, 21 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo