Check sibling questions

 


Transcript

Ex 7.10, 10 By using the properties of definite integrals, evaluate the integrals : ∫_0^(πœ‹/2)β–’γ€– (2 log⁑sin⁑π‘₯ βˆ’log⁑sin⁑2π‘₯ ) γ€— 𝑑π‘₯ Let I1=∫_0^(πœ‹/2)β–’γ€– (2 log⁑sin⁑π‘₯ βˆ’log⁑sin⁑2π‘₯ ) γ€— 𝑑π‘₯ I1= ∫_0^(πœ‹/2)β–’γ€– [2 log⁑sin⁑π‘₯ βˆ’π‘™π‘œπ‘”(2 sin⁑〖π‘₯ cos⁑π‘₯ γ€— )] γ€— 𝑑π‘₯ I1= ∫_0^(πœ‹/2)β–’γ€– [2 log⁑sin⁑π‘₯ βˆ’log⁑2βˆ’log⁑sin⁑〖π‘₯βˆ’log⁑cos⁑π‘₯ γ€— ] γ€— 𝑑π‘₯ I1= ∫_0^(πœ‹/2)β–’γ€– [log⁑sin⁑π‘₯ βˆ’π‘™π‘œπ‘”2βˆ’log⁑cos⁑π‘₯ ] γ€— 𝑑π‘₯ I1= ∫_0^(πœ‹/2)β–’log⁑sin⁑〖π‘₯ 𝑑π‘₯γ€— βˆ’βˆ«_0^(πœ‹/2)β–’γ€–log⁑2𝑑π‘₯βˆ’βˆ«_0^(πœ‹/2)β–’log⁑cos⁑〖π‘₯ 𝑑π‘₯γ€— γ€— Solving I2 I2=∫_0^(πœ‹/2)β–’log⁑cos⁑〖π‘₯ 𝑑π‘₯γ€— ∴ I2= ∫_0^(πœ‹/2)β–’logβ‘π‘π‘œπ‘ (πœ‹/2βˆ’π‘₯)𝑑π‘₯ I2=∫_0^(πœ‹/2)β–’log⁑sin⁑〖π‘₯ 𝑑π‘₯γ€— Put the value of I2 in (1) i.e. I1 ∴ I1= ∫_0^(πœ‹/2)β–’log⁑sin⁑〖π‘₯ 𝑑π‘₯γ€— βˆ’βˆ«_0^(πœ‹/2)β–’γ€–log 2〗⁑𝑑π‘₯ βˆ’βˆ«_𝟎^(𝝅/𝟐)β–’π₯π¨π β‘πœπ¨π¬β‘γ€–π’™ 𝒅𝒙〗 I1= ∫_0^(πœ‹/2)β–’log⁑sin⁑〖π‘₯ 𝑑π‘₯γ€— βˆ’βˆ«_0^(πœ‹/2)β–’γ€–log 2〗⁑𝑑π‘₯ βˆ’βˆ«_𝟎^(𝝅/𝟐)β–’π’π’π’ˆβ‘π¬π’π§β‘γ€–π’™ 𝒅𝒙〗 I1= – ∫_0^(πœ‹/2)β–’γ€–log 2〗⁑𝑑π‘₯ I1= – log 2∫_0^(πœ‹/2)▒𝑑π‘₯ I1= – log 2[π‘₯]_0^(πœ‹/2) I1= – log 2[πœ‹/2βˆ’0] I1= – log 2Γ—πœ‹/2 I1= log⁑〖〖 (2)γ€—^(βˆ’1) γ€— [πœ‹/2] I1= 𝝅/𝟐 π₯𝐨𝐠 (𝟏/𝟐)

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo