Ex 7.10, 9 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.10, 9 By using the properties of definite integrals, evaluate the integrals : โซ_0^2โ๐ฅโกโ(2โ๐ฅ) ๐๐ฅ Let I=โซ_0^2โใ๐ฅโ(2โ๐ฅ) ๐๐ฅใ โด I=โซ_0^2โใ(2โ๐ฅ) โ(2โ(2โ๐ฅ) ) ๐๐ฅใ I=โซ_0^2โใ(2โ๐ฅ) โ(2โ2+๐ฅ ) ๐๐ฅใ I=โซ_0^2โใ(2โ๐ฅ) โ(๐ฅ ) ๐๐ฅใ I=โซ_0^2โใ(2โ๐ฅ) (๐ฅ)^(1/2) ๐๐ฅใ I=โซ_0^2โใ(2. ๐ฅ^(1/2)โ๐ฅ.ใ ๐ฅใ^(1/2) ) ๐๐ฅใ I=2โซ_0^2โใ๐ฅ^(1/2) ๐๐ฅใ โโซ_0^2โใ๐ฅ. ๐ฅ^(3/2) ๐๐ฅใ I=2[๐ฅ^(1/2 + 1)/(1/2 + 1)]_0^2โ [๐ฅ^(3/2 + 1)/(3/2 + 1)]_0^2 I=2[๐ฅ^(3/2 )/(3/2)]_0^2โ [๐ฅ^(5/2)/(5/2)]_0^2 I=(2. 2)/3 [๐ฅ^(3/2) ]_0^2โ ใ2/5 [๐ฅ^(5/2) ]ใ_0^2 I=4/3 [(2)^(3/2)โ(0)^(3/2) ] โ 2/5 [(2)^(5/2)โ(0)^(5/2) ] I=4/3 [(2)^(3/2) ] โ 2/5 [(2)^(5/2) ] I=4/3 [[(2)^(1/2) ]^3 ] โ 2/5 [[(2)^(1/2) ]^3 ] I=4/3 [(โ2)^3 ] โ 2/5 [(โ2)^5 ] I=4/3 [2โ2] โ 2/5 [4โ2] I=(8โ2)/3โ(8โ2)/5 I=8โ2 [1/3โ1/5] I=8โ2 [2/15] ๐=(๐๐โ๐)/๐๐
Ex 7.10
Ex 7.10, 2
Ex 7.10, 3 Important
Ex 7.10, 4
Ex 7.10, 5 Important
Ex 7.10, 6
Ex 7.10,7 Important
Ex 7.10,8 Important
Ex 7.10, 9 You are here
Ex 7.10, 10 Important
Ex 7.10, 11 Important
Ex 7.10, 12 Important
Ex 7.10, 13
Ex 7.10, 14
Ex 7.10, 15
Ex 7.10, 16 Important
Ex 7.10, 17
Ex 7.10, 18 Important
Ex 7.10, 19
Ex 7.10, 20 (MCQ) Important
Ex 7.10, 21 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo