Ex 7.10, 3 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.10, 3 By using the properties of definite integrals, evaluate the integrals : โซ_0^(๐/2)โ(sin^(3/2)โก๐ฅ ๐๐ฅ)/(sin^(3/2)โก๐ฅ + cos^(3/2)โก๐ฅ ) Let I=โซ_0^(๐/2)โใ(sin^(3/2) ๐ฅ)/(sin^(3/2) ๐ฅ + cos^(3/2)โก๐ฅ ) ๐๐ฅใ I= โซ_0^(๐/2)โใ(sin^(3/2) (๐/2 โ ๐ฅ))/(sin^(3/2) (๐/2 โ ๐ฅ) + cos^(3/2) (๐/2 โ ๐ฅ) ) ๐๐ฅใ โด I= โซ_0^(๐/2)โใcos^(3/2)โก๐ฅ/(cos^(3/2)โก๐ฅ + sin^(3/2)โก๐ฅ ) ๐๐ฅใ Adding (1) and (2) i.e. (1) + (2) I+I= sin^(3/2)โก๐ฅ/(sin^(3/2)โก๐ฅ + cos^(3/2)โก๐ฅ ) ๐๐ฅ+โซ_0^(๐/2)โใcos^(3/2)โก๐ฅ/(cos^(3/2)โก๐ฅ + sin^(3/2)โก๐ฅ ) ๐๐ฅใ 2I=โซ_0^(๐/2)โใ[(sin^(3/2)โก๐ฅ + cos^(3/2)โก๐ฅ)/(sin^(3/2)โก๐ฅ + cos^(3/2)โก๐ฅ )] ๐๐ฅใ 2I= โซ_0^(๐/2)โใ ๐๐ฅใ I=1/2 โซ_0^(๐/2)โใ ๐๐ฅใ I=1/2 [๐ฅ]_0^(๐/2) I= 1/2 [๐/2โ0] I= ๐/4
Ex 7.10
Ex 7.10, 2
Ex 7.10, 3 Important You are here
Ex 7.10, 4
Ex 7.10, 5 Important
Ex 7.10, 6
Ex 7.10,7 Important
Ex 7.10,8 Important
Ex 7.10, 9
Ex 7.10, 10 Important
Ex 7.10, 11 Important
Ex 7.10, 12 Important
Ex 7.10, 13
Ex 7.10, 14
Ex 7.10, 15
Ex 7.10, 16 Important
Ex 7.10, 17
Ex 7.10, 18 Important
Ex 7.10, 19
Ex 7.10, 20 (MCQ) Important
Ex 7.10, 21 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo