Check sibling questions


Transcript

Ex 7.10, 2 By using the properties of definite integrals, evaluate the integrals : ∫_0^(πœ‹/2)β–’γ€–βˆš(sin⁑π‘₯ )/(√(sin⁑π‘₯ ) + √(cos⁑π‘₯ ) ) 𝑑π‘₯γ€— Let I=∫_0^(πœ‹/2)β–’γ€–βˆš(sin⁑π‘₯ )/(√(sin⁑π‘₯ ) + √(cos⁑π‘₯ ) ) 𝑑π‘₯γ€— I= ∫_0^(πœ‹/2)β–’γ€–βˆš(γ€–sin 〗⁑(πœ‹/2 βˆ’ π‘₯) )/(√(γ€–sin 〗⁑(πœ‹/2 βˆ’ π‘₯) ) + √(γ€–cos 〗⁑(πœ‹/2 βˆ’ π‘₯) ) ) 𝑑π‘₯γ€— ∴ I= ∫_0^(πœ‹/2)β–’γ€–βˆš(γ€–π‘π‘œπ‘  〗⁑π‘₯ )/(√(γ€–π‘π‘œπ‘  〗⁑π‘₯ ) + √(𝑠𝑖𝑛⁑π‘₯ ) ) 𝑑π‘₯γ€— Adding (1) and (2) i.e. (1) + (2) I+I= ∫_0^(πœ‹/2)β–’γ€–βˆš(γ€–sin 〗⁑π‘₯ )/(√(γ€–sin 〗⁑π‘₯ ) + √(γ€–cos 〗⁑π‘₯ ) ) 𝑑π‘₯γ€—+∫_0^(πœ‹/2)β–’γ€–βˆš(π‘π‘œπ‘ β‘π‘₯ )/(√(π‘π‘œπ‘ β‘π‘₯ ) + √(𝑠𝑖𝑛⁑π‘₯ ) ) 𝑑π‘₯γ€— 2I=∫_0^(πœ‹/2)β–’γ€–[(√(γ€–sin 〗⁑π‘₯ ) + √(π‘π‘œπ‘ β‘π‘₯ ))/(√(γ€–sin 〗⁑π‘₯ ) + √(π‘π‘œπ‘ β‘π‘₯ )) ] 𝑑π‘₯γ€— 2I= ∫_0^(πœ‹/2)β–’γ€– 𝑑π‘₯γ€— I=1/2 ∫_0^(πœ‹/2)β–’γ€– 𝑑π‘₯γ€— I= 1/2 [π‘₯]_0^(πœ‹/2) I=1/2 [πœ‹/2βˆ’0] ∴ I= πœ‹/4

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo