


Are ads bothering you?
Ex 7.5
Ex 7.5, 2
Ex 7.5, 3 Important
Ex 7.5, 4
Ex 7.5, 5
Ex 7.5, 6 Important
Ex 7.5, 7 Important
Ex 7.5, 8
Ex 7.5, 9 Important
Ex 7.5, 10
Ex 7.5, 11 Important
Ex 7.5, 12
Ex 7.5, 13 Important
Ex 7.5, 14 Important
Ex 7.5, 15
Ex 7.5, 16 Important
Ex 7.5, 17
Ex 7.5, 18 Important
Ex 7.5, 19
Ex 7.5, 20 Important
Ex 7.5, 21 Important
Ex 7.5, 22 (MCQ)
Ex 7.5, 23 (MCQ) Important You are here
Last updated at Aug. 9, 2021 by Teachoo
Ex 7.5, 23 β«1βππ₯/(π₯(π₯2 + 1) ) equals log |π₯| β 1/(2 ) log (x2+1) + C log |π₯| + 1/(2 ) log (x2+1) + C log |π₯| + 1/(2 ) log (x2+1) + C 1/(2 ) log |π₯| + log (x2+1) + C β«1βππ₯/(π₯(π₯2 + 1) ) Let t = (1+π₯^2) Differentiating both sides π€.π.π‘.π₯ ππ‘/ππ₯ = 0+2π₯ ππ₯ = ππ‘/2π₯ Thus, our equation becomes β«1βππ₯/(π₯(π₯^2 + 1) ) = β«1β1/(π₯ π‘) ππ‘/2π₯ = 1/2 β«1βγ ππ‘/π‘Γ1/π₯^2 γ = 1/2 β«1βππ‘/(π‘(π‘ β 1)) We can write integrand as Since t = (1+π₯^2) x2 = (t β 1) 1/(π‘(π‘ β 1)) = π΄/π‘ + π΅/(π‘ β 1) 1/(π‘(π‘ β 1)) = (π΄(π‘ β 1) + π΅π‘)/(π‘(π‘ β 1)) Cancelling denominator 1 = π΄(π‘β1)+π΅π‘ Putting t = 0 in (1) 1 = π΄(0β1)+π΅Γ0 1 = βπ΄ π΄ = β1 Putting t = 1 in (1) 1 = π΄(1β1)+π΅(1) 1 = π΄Γ0+π΅ 1 = π΅ π΅ = 1 Therefore 1/2 β«1βππ‘/(π‘(π‘ β 1)) = 1/2 β«1βγ(β1)/π‘ γ ππ‘ + 1/2 β«1βγ1/(π‘ β 1) γ ππ‘ = (β1)/2 γlog γβ‘|π‘|+ 1/2 γlog γβ‘|π‘β1|+πΆ Putting back t = (1+π₯^2) = (β1)/2 γlog γβ‘|1+π₯^2 |+ 1/2 γlog γβ‘|1+π₯^2β1|+πΆ = (β1)/2 γlog γβ‘|1+π₯^2 |+ 1/2 γlog γβ‘|π₯^2 |+πΆ = (β1)/2 γlog γβ‘|1+π₯^2 |+ 1/2Γ2 γlog γβ‘|π₯|+πΆ = (β1)/2 γlog γβ‘|1+π₯^2 |+ γlog γβ‘|π₯|+πΆ As 1 + π₯^2 it is always positive = γlog γβ‘|π₯|β 1/2 γlog γβ‘γ(π₯^2+1)γ+πΆ β΄ Correct answer is A . (log π₯^π=π logβ‘π₯)