Learn Intergation from Davneet Sir - Live lectures starting soon!

Ex 7.5

Ex 7.5, 1

Ex 7.5, 2

Ex 7.5, 3 Important

Ex 7.5, 4

Ex 7.5, 5

Ex 7.5, 6 Important

Ex 7.5, 7 Important

Ex 7.5, 8

Ex 7.5, 9 Important

Ex 7.5, 10

Ex 7.5, 11 Important

Ex 7.5, 12

Ex 7.5, 13 Important

Ex 7.5, 14 Important

Ex 7.5, 15

Ex 7.5, 16 Important

Ex 7.5, 17

Ex 7.5, 18 Important

Ex 7.5, 19

Ex 7.5, 20 Important

Ex 7.5, 21 Important

Ex 7.5, 22 (MCQ)

Ex 7.5, 23 (MCQ) Important You are here

Chapter 7 Class 12 Integrals

Serial order wise

Last updated at Aug. 9, 2021 by Teachoo

Ex 7.5, 23 β«1βππ₯/(π₯(π₯2 + 1) ) equals log |π₯| β 1/(2 ) log (x2+1) + C log |π₯| + 1/(2 ) log (x2+1) + C log |π₯| + 1/(2 ) log (x2+1) + C 1/(2 ) log |π₯| + log (x2+1) + C β«1βππ₯/(π₯(π₯2 + 1) ) Let t = (1+π₯^2) Differentiating both sides π€.π.π‘.π₯ ππ‘/ππ₯ = 0+2π₯ ππ₯ = ππ‘/2π₯ Thus, our equation becomes β«1βππ₯/(π₯(π₯^2 + 1) ) = β«1β1/(π₯ π‘) ππ‘/2π₯ = 1/2 β«1βγ ππ‘/π‘Γ1/π₯^2 γ = 1/2 β«1βππ‘/(π‘(π‘ β 1)) We can write integrand as Since t = (1+π₯^2) x2 = (t β 1) 1/(π‘(π‘ β 1)) = π΄/π‘ + π΅/(π‘ β 1) 1/(π‘(π‘ β 1)) = (π΄(π‘ β 1) + π΅π‘)/(π‘(π‘ β 1)) Cancelling denominator 1 = π΄(π‘β1)+π΅π‘ Putting t = 0 in (1) 1 = π΄(0β1)+π΅Γ0 1 = βπ΄ π΄ = β1 Putting t = 1 in (1) 1 = π΄(1β1)+π΅(1) 1 = π΄Γ0+π΅ 1 = π΅ π΅ = 1 Therefore 1/2 β«1βππ‘/(π‘(π‘ β 1)) = 1/2 β«1βγ(β1)/π‘ γ ππ‘ + 1/2 β«1βγ1/(π‘ β 1) γ ππ‘ = (β1)/2 γlog γβ‘|π‘|+ 1/2 γlog γβ‘|π‘β1|+πΆ Putting back t = (1+π₯^2) = (β1)/2 γlog γβ‘|1+π₯^2 |+ 1/2 γlog γβ‘|1+π₯^2β1|+πΆ = (β1)/2 γlog γβ‘|1+π₯^2 |+ 1/2 γlog γβ‘|π₯^2 |+πΆ = (β1)/2 γlog γβ‘|1+π₯^2 |+ 1/2Γ2 γlog γβ‘|π₯|+πΆ = (β1)/2 γlog γβ‘|1+π₯^2 |+ γlog γβ‘|π₯|+πΆ As 1 + π₯^2 it is always positive = γlog γβ‘|π₯|β 1/2 γlog γβ‘γ(π₯^2+1)γ+πΆ β΄ Correct answer is A . (log π₯^π=π logβ‘π₯)