# Ex 7.5, 2 - Chapter 7 Class 12 Integrals (Term 2)

Last updated at May 29, 2018 by Teachoo

Ex 7.5

Ex 7.5, 1

Ex 7.5, 2 You are here

Ex 7.5, 3 Important

Ex 7.5, 4

Ex 7.5, 5

Ex 7.5, 6 Important

Ex 7.5, 7 Important

Ex 7.5, 8

Ex 7.5, 9 Important

Ex 7.5, 10

Ex 7.5, 11 Important

Ex 7.5, 12

Ex 7.5, 13 Important

Ex 7.5, 14 Important

Ex 7.5, 15

Ex 7.5, 16 Important

Ex 7.5, 17

Ex 7.5, 18 Important

Ex 7.5, 19

Ex 7.5, 20 Important

Ex 7.5, 21 Important

Ex 7.5, 22 (MCQ)

Ex 7.5, 23 (MCQ) Important

Chapter 7 Class 12 Integrals

Serial order wise

Last updated at May 29, 2018 by Teachoo

Ex 7.5, 2 1/(𝑥2− 9) Solving integrand 1/(𝑥2− 9)=1/((𝑥 − 3) (𝑥 + 3) ) We can write it as 1/((𝑥 − 3) (𝑥 + 3) )=𝐴/((𝑥 − 3) ) + 𝐵/((𝑥 + 3) ) 1/((𝑥 − 3) (𝑥 + 3) )=(𝐴(𝑥 + 3) + 𝐵(𝑥 − 3))/((𝑥 − 3) (𝑥 + 3) ) " " Cancelling denominator 1 = 𝐴(𝑥 + 3) + 𝐵(𝑥 − 3) Putting 𝑥 = 3 in (1) 1 = 𝐴(𝑥+3)+𝐵(𝑥−3) 1 = 𝐴(3+3) + 𝐵(3−3) 1 = 𝐴×6+ 𝐵×0 1 = 6𝐴 𝐴 = 1/6 Similarly Putting y=−3 in (1) 1 = 𝐴(−3+3) + 𝐵(−3−3) 1 = 𝐴×0+ 𝐵×(−6) 1 = −6𝐵 𝐵 = (−1)/6 Hence we can write it as 1/((𝑥 − 3) (𝑥 + 3) ) = 1/6(𝑥 − 3) − 1/6(𝑥 + 3) Therefore ∫1▒1/((𝑥 − 3) (𝑥 + 3) ) 𝑑𝑥 = 1/6 ∫1▒1/((𝑥 − 3) ) 𝑑𝑥 − 1/6 ∫1▒1/((𝑥 + 3) ) 𝑑𝑥 = 1/6 〖log 〗|𝑥−3|− 1/6 〖log 〗|𝑥+3|+𝐶 = 1/6 (〖log 〗|𝑥−3|−〖log 〗|𝑥+3| )+𝐶 = 𝟏/𝟔 〖𝒍𝒐𝒈 〗|(𝒙 − 𝟑)/(𝒙 + 𝟑)|+𝑪