

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 7.5
Ex 7.5, 2 You are here
Ex 7.5, 3 Important
Ex 7.5, 4
Ex 7.5, 5
Ex 7.5, 6 Important
Ex 7.5, 7 Important
Ex 7.5, 8
Ex 7.5, 9 Important
Ex 7.5, 10
Ex 7.5, 11 Important
Ex 7.5, 12
Ex 7.5, 13 Important
Ex 7.5, 14 Important
Ex 7.5, 15
Ex 7.5, 16 Important
Ex 7.5, 17
Ex 7.5, 18 Important
Ex 7.5, 19
Ex 7.5, 20 Important
Ex 7.5, 21 Important
Ex 7.5, 22 (MCQ)
Ex 7.5, 23 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 7.5, 2 1/(𝑥2− 9) Solving integrand 1/(𝑥2− 9)=1/((𝑥 − 3) (𝑥 + 3) ) We can write it as 1/((𝑥 − 3) (𝑥 + 3) )=𝐴/((𝑥 − 3) ) + 𝐵/((𝑥 + 3) ) 1/((𝑥 − 3) (𝑥 + 3) )=(𝐴(𝑥 + 3) + 𝐵(𝑥 − 3))/((𝑥 − 3) (𝑥 + 3) ) " " Cancelling denominator 1 = 𝐴(𝑥 + 3) + 𝐵(𝑥 − 3) Putting 𝑥 = 3 in (1) 1 = 𝐴(𝑥+3)+𝐵(𝑥−3) 1 = 𝐴(3+3) + 𝐵(3−3) 1 = 𝐴×6+ 𝐵×0 1 = 6𝐴 𝐴 = 1/6 Similarly Putting y=−3 in (1) 1 = 𝐴(−3+3) + 𝐵(−3−3) 1 = 𝐴×0+ 𝐵×(−6) 1 = −6𝐵 𝐵 = (−1)/6 Hence we can write it as 1/((𝑥 − 3) (𝑥 + 3) ) = 1/6(𝑥 − 3) − 1/6(𝑥 + 3) Therefore ∫1▒1/((𝑥 − 3) (𝑥 + 3) ) 𝑑𝑥 = 1/6 ∫1▒1/((𝑥 − 3) ) 𝑑𝑥 − 1/6 ∫1▒1/((𝑥 + 3) ) 𝑑𝑥 = 1/6 〖log 〗|𝑥−3|− 1/6 〖log 〗|𝑥+3|+𝐶 = 1/6 (〖log 〗|𝑥−3|−〖log 〗|𝑥+3| )+𝐶 = 𝟏/𝟔 〖𝒍𝒐𝒈 〗|(𝒙 − 𝟑)/(𝒙 + 𝟑)|+𝑪