Ex 7.5, 11 - Integrate 5x / (x + 1) (x^2 - 4) - NCERT Maths

Ex 7.5, 11 - Chapter 7 Class 12 Integrals - Part 2
Ex 7.5, 11 - Chapter 7 Class 12 Integrals - Part 3
Ex 7.5, 11 - Chapter 7 Class 12 Integrals - Part 4


Transcript

Ex 7.5, 11 Integrate the function 5π‘₯/((π‘₯ + 1) (π‘₯2βˆ’ 4) ) We can write the integrand as 5π‘₯/((π‘₯ + 1) (π‘₯2βˆ’ 4) ) = 5π‘₯/((π‘₯ + 1) (π‘₯ βˆ’ 2) (π‘₯ + 2) ) 5π‘₯/((π‘₯ + 1) (π‘₯2βˆ’ 4) ) = 𝐴/((π‘₯ + 1) ) + 𝐡/((π‘₯ βˆ’ 2) ) + 𝐢/((π‘₯ + 2) ) 5π‘₯/((π‘₯ + 1) (π‘₯2βˆ’ 4) ) = (𝐴(π‘₯ βˆ’ 2)(π‘₯ + 2) + 𝐡(π‘₯ + 1)(π‘₯ + 2) + 𝐢(π‘₯ +1)(π‘₯ βˆ’ 2))/((π‘₯ + 1) (π‘₯ βˆ’ 2) (π‘₯ + 2) ) Cancelling denominator 5π‘₯ = 𝐴(π‘₯βˆ’2)(π‘₯+2)+𝐡(π‘₯+1)(π‘₯+2)+𝐢(π‘₯+1)(π‘₯βˆ’2) …(1) Putting x = βˆ’1 in (1) 5π‘₯ = 𝐴(π‘₯βˆ’2)(π‘₯+2)+𝐡(π‘₯+1)(π‘₯+2)+𝐢(π‘₯+1)(π‘₯βˆ’2) 5( βˆ’1) = 𝐴(βˆ’1βˆ’2)(βˆ’1+2)+𝐡(βˆ’1+1)(βˆ’1+2)+𝐢(βˆ’1+1)(βˆ’1βˆ’2) βˆ’5 = 𝐴(βˆ’3)(1)+𝐡×0+𝐢×0 βˆ’5 = βˆ’3𝐴 𝐴 = (βˆ’5)/(βˆ’3) = 5/3 Putting x = 2 in (1) 5π‘₯ = 𝐴(π‘₯βˆ’2)(π‘₯+2)+𝐡(π‘₯+1)(π‘₯+2)+𝐢(π‘₯+1)(π‘₯βˆ’2) 5"(2) = " 𝐴(2βˆ’2)(2+2)+𝐡(2+1)(2+2)+𝐢(2+1)(2βˆ’2) 10 = 𝐴×0+𝐡(3)(4)+𝐢×0 10 = 12𝐡 𝐡 = 10/12=5/6 Putting x = βˆ’2 in (1) 5π‘₯ = 𝐴(π‘₯βˆ’2)(π‘₯+2)+𝐡(π‘₯+1)(π‘₯+2)+𝐢(π‘₯+1)(π‘₯βˆ’2) 5"("βˆ’"2) = " 𝐴(βˆ’2βˆ’2)(βˆ’2+2)+𝐡(βˆ’2+1)(βˆ’2+2)+𝐢(βˆ’2+1)(βˆ’2βˆ’2) βˆ’10 = 𝐴×0+𝐡×0+𝐢(βˆ’1)(βˆ’4) βˆ’10 = 4𝐢 𝐢 = (βˆ’10)/4 𝐢 = (βˆ’5)/2 Therefore ∫1β–’5π‘₯/((π‘₯ + 1) (π‘₯2βˆ’ 4) )=∫1β–’(𝐴/(π‘₯ + 1)+𝐡/(π‘₯ βˆ’ 2)+𝐢/(π‘₯ + 2)) 𝑑π‘₯ =5/3 ∫1▒𝑑π‘₯/(π‘₯ + 1) 𝑑π‘₯+ 5/6 ∫1▒𝑑π‘₯/(π‘₯ βˆ’ 2) 𝑑π‘₯βˆ’5/2 ∫1▒𝑑π‘₯/((π‘₯ + 2) ) =πŸ“/πŸ‘ γ€–π’π’π’ˆ 〗⁑|𝒙+𝟏|βˆ’ πŸ“/𝟐 γ€–π₯𝐨𝐠 〗⁑|𝒙+𝟐|+πŸ“/πŸ” γ€–π₯𝐨𝐠 〗⁑|π’™βˆ’πŸ|+π‘ͺ

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.