


Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 7.5
Ex 7.5, 2
Ex 7.5, 3 Important
Ex 7.5, 4
Ex 7.5, 5
Ex 7.5, 6 Important
Ex 7.5, 7 Important
Ex 7.5, 8
Ex 7.5, 9 Important
Ex 7.5, 10
Ex 7.5, 11 Important You are here
Ex 7.5, 12
Ex 7.5, 13 Important
Ex 7.5, 14 Important
Ex 7.5, 15
Ex 7.5, 16 Important
Ex 7.5, 17
Ex 7.5, 18 Important
Ex 7.5, 19
Ex 7.5, 20 Important
Ex 7.5, 21 Important
Ex 7.5, 22 (MCQ)
Ex 7.5, 23 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 7.5, 11 Integrate the function 5𝑥/((𝑥 + 1) (𝑥2− 4) ) We can write the integrand as 5𝑥/((𝑥 + 1) (𝑥2− 4) ) = 5𝑥/((𝑥 + 1) (𝑥 − 2) (𝑥 + 2) ) 5𝑥/((𝑥 + 1) (𝑥2− 4) ) = 𝐴/((𝑥 + 1) ) + 𝐵/((𝑥 − 2) ) + 𝐶/((𝑥 + 2) ) 5𝑥/((𝑥 + 1) (𝑥2− 4) ) = (𝐴(𝑥 − 2)(𝑥 + 2) + 𝐵(𝑥 + 1)(𝑥 + 2) + 𝐶(𝑥 +1)(𝑥 − 2))/((𝑥 + 1) (𝑥 − 2) (𝑥 + 2) ) Cancelling denominator 5𝑥 = 𝐴(𝑥−2)(𝑥+2)+𝐵(𝑥+1)(𝑥+2)+𝐶(𝑥+1)(𝑥−2) …(1) Putting x = −1 in (1) 5𝑥 = 𝐴(𝑥−2)(𝑥+2)+𝐵(𝑥+1)(𝑥+2)+𝐶(𝑥+1)(𝑥−2) 5( −1) = 𝐴(−1−2)(−1+2)+𝐵(−1+1)(−1+2)+𝐶(−1+1)(−1−2) −5 = 𝐴(−3)(1)+𝐵×0+𝐶×0 −5 = −3𝐴 𝐴 = (−5)/(−3) = 5/3 Putting x = 2 in (1) 5𝑥 = 𝐴(𝑥−2)(𝑥+2)+𝐵(𝑥+1)(𝑥+2)+𝐶(𝑥+1)(𝑥−2) 5"(2) = " 𝐴(2−2)(2+2)+𝐵(2+1)(2+2)+𝐶(2+1)(2−2) 10 = 𝐴×0+𝐵(3)(4)+𝐶×0 10 = 12𝐵 𝐵 = 10/12=5/6 Putting x = −2 in (1) 5𝑥 = 𝐴(𝑥−2)(𝑥+2)+𝐵(𝑥+1)(𝑥+2)+𝐶(𝑥+1)(𝑥−2) 5"("−"2) = " 𝐴(−2−2)(−2+2)+𝐵(−2+1)(−2+2)+𝐶(−2+1)(−2−2) −10 = 𝐴×0+𝐵×0+𝐶(−1)(−4) −10 = 4𝐶 𝐶 = (−10)/4 𝐶 = (−5)/2 Therefore ∫1▒5𝑥/((𝑥 + 1) (𝑥2− 4) )=∫1▒(𝐴/(𝑥 + 1)+𝐵/(𝑥 − 2)+𝐶/(𝑥 + 2)) 𝑑𝑥 =5/3 ∫1▒𝑑𝑥/(𝑥 + 1) 𝑑𝑥+ 5/6 ∫1▒𝑑𝑥/(𝑥 − 2) 𝑑𝑥−5/2 ∫1▒𝑑𝑥/((𝑥 + 2) ) =𝟓/𝟑 〖𝒍𝒐𝒈 〗|𝒙+𝟏|− 𝟓/𝟐 〖𝐥𝐨𝐠 〗|𝒙+𝟐|+𝟓/𝟔 〖𝐥𝐨𝐠 〗|𝒙−𝟐|+𝑪