Ex 7.5, 11 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.5
Ex 7.5, 2
Ex 7.5, 3 Important
Ex 7.5, 4
Ex 7.5, 5
Ex 7.5, 6 Important
Ex 7.5, 7 Important
Ex 7.5, 8
Ex 7.5, 9 Important
Ex 7.5, 10
Ex 7.5, 11 Important You are here
Ex 7.5, 12
Ex 7.5, 13 Important
Ex 7.5, 14 Important
Ex 7.5, 15
Ex 7.5, 16 Important
Ex 7.5, 17
Ex 7.5, 18 Important
Ex 7.5, 19
Ex 7.5, 20 Important
Ex 7.5, 21 Important
Ex 7.5, 22 (MCQ)
Ex 7.5, 23 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 7.5, 11 Integrate the function 5π₯/((π₯ + 1) (π₯2β 4) ) We can write the integrand as 5π₯/((π₯ + 1) (π₯2β 4) ) = 5π₯/((π₯ + 1) (π₯ β 2) (π₯ + 2) ) 5π₯/((π₯ + 1) (π₯2β 4) ) = π΄/((π₯ + 1) ) + π΅/((π₯ β 2) ) + πΆ/((π₯ + 2) ) 5π₯/((π₯ + 1) (π₯2β 4) ) = (π΄(π₯ β 2)(π₯ + 2) + π΅(π₯ + 1)(π₯ + 2) + πΆ(π₯ +1)(π₯ β 2))/((π₯ + 1) (π₯ β 2) (π₯ + 2) ) Cancelling denominator 5π₯ = π΄(π₯β2)(π₯+2)+π΅(π₯+1)(π₯+2)+πΆ(π₯+1)(π₯β2) β¦(1) Putting x = β1 in (1) 5π₯ = π΄(π₯β2)(π₯+2)+π΅(π₯+1)(π₯+2)+πΆ(π₯+1)(π₯β2) 5( β1) = π΄(β1β2)(β1+2)+π΅(β1+1)(β1+2)+πΆ(β1+1)(β1β2) β5 = π΄(β3)(1)+π΅Γ0+πΆΓ0 β5 = β3π΄ π΄ = (β5)/(β3) = 5/3 Putting x = 2 in (1) 5π₯ = π΄(π₯β2)(π₯+2)+π΅(π₯+1)(π₯+2)+πΆ(π₯+1)(π₯β2) 5"(2) = " π΄(2β2)(2+2)+π΅(2+1)(2+2)+πΆ(2+1)(2β2) 10 = π΄Γ0+π΅(3)(4)+πΆΓ0 10 = 12π΅ π΅ = 10/12=5/6 Putting x = β2 in (1) 5π₯ = π΄(π₯β2)(π₯+2)+π΅(π₯+1)(π₯+2)+πΆ(π₯+1)(π₯β2) 5"("β"2) = " π΄(β2β2)(β2+2)+π΅(β2+1)(β2+2)+πΆ(β2+1)(β2β2) β10 = π΄Γ0+π΅Γ0+πΆ(β1)(β4) β10 = 4πΆ πΆ = (β10)/4 πΆ = (β5)/2 Therefore β«1β5π₯/((π₯ + 1) (π₯2β 4) )=β«1β(π΄/(π₯ + 1)+π΅/(π₯ β 2)+πΆ/(π₯ + 2)) ππ₯ =5/3 β«1βππ₯/(π₯ + 1) ππ₯+ 5/6 β«1βππ₯/(π₯ β 2) ππ₯β5/2 β«1βππ₯/((π₯ + 2) ) =π/π γπππ γβ‘|π+π|β π/π γπ₯π¨π γβ‘|π+π|+π/π γπ₯π¨π γβ‘|πβπ|+πͺ