Ex 7.5, 21 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.5
Ex 7.5, 2
Ex 7.5, 3 Important
Ex 7.5, 4
Ex 7.5, 5
Ex 7.5, 6 Important
Ex 7.5, 7 Important
Ex 7.5, 8
Ex 7.5, 9 Important
Ex 7.5, 10
Ex 7.5, 11 Important
Ex 7.5, 12
Ex 7.5, 13 Important
Ex 7.5, 14 Important
Ex 7.5, 15
Ex 7.5, 16 Important
Ex 7.5, 17
Ex 7.5, 18 Important
Ex 7.5, 19
Ex 7.5, 20 Important
Ex 7.5, 21 Important You are here
Ex 7.5, 22 (MCQ)
Ex 7.5, 23 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 7.5, 21 Integrate the function 1/((๐^๐ฅ โ 1) ) [Hint : Put ex = t] Let ๐^๐ฅ = ๐ก Differentiating both sides ๐ค.๐.๐ก.๐ฅ ๐^๐ฅ = ๐๐ก/๐๐ฅ ๐๐ฅ = ๐๐ก/๐^๐ฅ Therefore โซ1โ1/((๐^๐ฅ โ 1) ) ๐๐ฅ = โซ1โ1/((๐ก โ 1) ) ๐๐ก/๐^๐ฅ = โซ1โ๐๐ก/(๐ก(๐ก โ 1) ) We can write integrand as 1/(๐ก(๐ก โ 1) ) = ๐ด/๐ก + ๐ต/(๐ก โ 1) 1/(๐ก(๐ก โ 1) ) = (๐ด(๐ก โ 1) + ๐ต๐ก)/๐ก(๐ก โ 1) Cancelling denominator 1 = ๐ด(๐กโ1)+๐ต๐ก Putting t = 0 in (1) 1 = ๐ด(0โ1)+๐ตร0 1 = ๐ดร(โ1) 1 = โ๐ด ๐ด = โ1 Putting t = 1 1 = ๐ด(1โ1)+๐ตร1 1 = ๐ดร0+๐ต 1 = ๐ต ๐ต = 1 Therefore โซ1โ1/(๐ก(๐ก โ 1) ) ๐๐ก = โซ1โ(โ1)/(๐ก ) ๐๐ก + โซ1โ1/(๐ก โ 1 ) = โใlog ใโก|๐ก|+ใlog ใโก|๐กโ1|+๐ถ = ใlog ใโก|(๐ก โ 1)/๐ก|+๐ถ Putting back t = ๐^๐ฅ = ใ๐๐๐ ใโก|(๐^๐ฅ โ 1)/๐^๐ฅ |+๐ถ = ใ๐ฅ๐จ๐ ใโก((๐^๐ โ ๐)/๐^๐ )+๐ช Since ex > 1 for x > 0 โด ex โ 1 > 0 โ |(๐^๐ โ ๐)/๐^๐ |=((๐^๐ โ ๐)/๐^๐ ) ("As " ๐๐๐ ๐ดโ๐๐๐ ๐ต" = " ๐๐๐ ๐ด/๐ต)