# Ex 7.5, 21 - Chapter 7 Class 12 Integrals

Last updated at April 16, 2024 by Teachoo

Ex 7.5

Ex 7.5, 1

Ex 7.5, 2

Ex 7.5, 3 Important

Ex 7.5, 4

Ex 7.5, 5

Ex 7.5, 6 Important

Ex 7.5, 7 Important

Ex 7.5, 8

Ex 7.5, 9 Important

Ex 7.5, 10

Ex 7.5, 11 Important

Ex 7.5, 12

Ex 7.5, 13 Important

Ex 7.5, 14 Important

Ex 7.5, 15

Ex 7.5, 16 Important

Ex 7.5, 17

Ex 7.5, 18 Important

Ex 7.5, 19

Ex 7.5, 20 Important

Ex 7.5, 21 Important You are here

Ex 7.5, 22 (MCQ)

Ex 7.5, 23 (MCQ) Important

Last updated at April 16, 2024 by Teachoo

Ex 7.5, 21 Integrate the function 1/((𝑒^𝑥 − 1) ) [Hint : Put ex = t] Let 𝑒^𝑥 = 𝑡 Differentiating both sides 𝑤.𝑟.𝑡.𝑥 𝑒^𝑥 = 𝑑𝑡/𝑑𝑥 𝑑𝑥 = 𝑑𝑡/𝑒^𝑥 Therefore ∫1▒1/((𝑒^𝑥 − 1) ) 𝑑𝑥 = ∫1▒1/((𝑡 − 1) ) 𝑑𝑡/𝑒^𝑥 = ∫1▒𝑑𝑡/(𝑡(𝑡 − 1) ) We can write integrand as 1/(𝑡(𝑡 − 1) ) = 𝐴/𝑡 + 𝐵/(𝑡 − 1) 1/(𝑡(𝑡 − 1) ) = (𝐴(𝑡 − 1) + 𝐵𝑡)/𝑡(𝑡 − 1) Cancelling denominator 1 = 𝐴(𝑡−1)+𝐵𝑡 Putting t = 0 in (1) 1 = 𝐴(0−1)+𝐵×0 1 = 𝐴×(−1) 1 = −𝐴 𝐴 = −1 Putting t = 1 1 = 𝐴(1−1)+𝐵×1 1 = 𝐴×0+𝐵 1 = 𝐵 𝐵 = 1 Therefore ∫1▒1/(𝑡(𝑡 − 1) ) 𝑑𝑡 = ∫1▒(−1)/(𝑡 ) 𝑑𝑡 + ∫1▒1/(𝑡 − 1 ) = −〖log 〗|𝑡|+〖log 〗|𝑡−1|+𝐶 = 〖log 〗|(𝑡 − 1)/𝑡|+𝐶 Putting back t = 𝑒^𝑥 = 〖𝑙𝑜𝑔 〗|(𝑒^𝑥 − 1)/𝑒^𝑥 |+𝐶 = 〖𝐥𝐨𝐠 〗((𝒆^𝒙 − 𝟏)/𝒆^𝒙 )+𝑪 Since ex > 1 for x > 0 ∴ ex – 1 > 0 ⇒ |(𝒆^𝒙 − 𝟏)/𝒆^𝒙 |=((𝒆^𝒙 − 𝟏)/𝒆^𝒙 ) ("As " 𝑙𝑜𝑔 𝐴−𝑙𝑜𝑔 𝐵" = " 𝑙𝑜𝑔 𝐴/𝐵)