Ex 7.5, 18 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.5
Ex 7.5, 2
Ex 7.5, 3 Important
Ex 7.5, 4
Ex 7.5, 5
Ex 7.5, 6 Important
Ex 7.5, 7 Important
Ex 7.5, 8
Ex 7.5, 9 Important
Ex 7.5, 10
Ex 7.5, 11 Important
Ex 7.5, 12
Ex 7.5, 13 Important
Ex 7.5, 14 Important
Ex 7.5, 15
Ex 7.5, 16 Important
Ex 7.5, 17
Ex 7.5, 18 Important You are here
Ex 7.5, 19
Ex 7.5, 20 Important
Ex 7.5, 21 Important
Ex 7.5, 22 (MCQ)
Ex 7.5, 23 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 7.5, 18 Integrate the function (๐ฅ2+ 1)(๐ฅ2+ 2)/(๐ฅ2+ 3)(๐ฅ2+ 4) (๐ฅ^2 + 1)(๐ฅ^2 + 2)/(๐ฅ^2 + 3)(๐ฅ^2 + 4) " " Let t = ๐ฅ^2 = (๐ก + 1)(๐ก + 2)/(๐ก + 3)(๐ก + 4) = (๐ก^2 + 3๐ก + 2)/(๐ก^2 + 7๐ก + 12) = 1 + (โ4๐ก โ10)/(๐ก^2 + 7๐ก + 12) = 1 + (โ(4๐ก + 10))/(๐ก + 3)(๐ก + 4) Rough = 1 โ ( (4๐ก + 10))/(๐ก + 3)(๐ก + 4) We can write (4๐ก + 10)/((๐ก + 3) (๐ก + 4) ) = ๐ด/((๐ก + 3) ) + ๐ต/((๐ก + 4) ) (4๐ก + 10)/((๐ก + 3) (๐ก + 4) ) = (๐ด(๐ก + 4) + ๐ต(๐ก + 3))/((๐ก + 3) (๐ก + 4) ) Cancelling denominator 4๐กโ10 = ๐ด(๐ก+4)+๐ต(๐ก+3) Putting t = โ 4 in (1) 4(โ4)+10 = ๐ด(โ4+4)+๐ต(โ4+3) โ16+10 = ๐ดร0+๐ต(โ1) โฆ(1) โ6 = ๐ดร0+๐ต(โ1) โ6 = โ๐ต ๐ต = 6 Putting t = โ3 in (1) 4๐กโ10 = ๐ด(๐ก+4)+๐ต(๐ก+3) 4(โ3)+10 = ๐ด(โ3+4)+๐ต(โ3+3) โ12+10 = ๐ดร1+๐ตร0 โ2 = ๐ด ๐ด = โ2 Hence we can write (4๐ก + 10)/((๐ก + 3) (๐ก + 4) ) = (โ2)/((๐ก + 3) ) + 6/((๐ก + 4) ) Putting back t = ๐ฅ^2 (4๐ฅ^2 โ 10)/((๐ฅ^2 + 3) (๐ฅ^2 + 4) ) = (โ2)/((๐ฅ^2 + 3) ) + 6/((๐ฅ^2 + 4) ) Therefore โซ1โ(๐ฅ2+ 1)(๐ฅ2+ 2)/(๐ฅ2+ 3)(๐ฅ2+ 4) = โซ1โใ1โ[(โ2)/((๐ฅ^2 + 3) ) + 6/((๐ฅ^2 + 4) )] ใ ๐๐ฅ = โซ1โ1. ๐๐ฅ + โซ1โ2/((๐ฅ^2 + 3) ) ๐๐ฅ โ โซ1โ6/((๐ฅ^2 + 4) ) ๐๐ฅ = โซ1โ1. ๐๐ฅ + 2โซ1โ1/(๐ฅ^2 + (โ3)^2 ) ๐๐ฅ โ 6โซ1โ1/((๐ฅ^2 +2^2 ) ) ๐๐ฅ = ๐ฅ + 2 ร 1/โ3 tan^(โ1)โกใ ๐ฅ/โ3ใ โ 6 ร 1/2 tan^(โ1)โกใ ๐ฅ/2ใ+๐ถ = ๐ + ๐/โ๐ ใ๐๐๐ใ^(โ๐)โก(๐/โ๐)โ๐ ใ๐๐๐ใ^(โ๐)โก(๐/๐)+๐ช