


Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 7.5
Ex 7.5, 2
Ex 7.5, 3 Important
Ex 7.5, 4
Ex 7.5, 5
Ex 7.5, 6 Important
Ex 7.5, 7 Important
Ex 7.5, 8
Ex 7.5, 9 Important
Ex 7.5, 10
Ex 7.5, 11 Important
Ex 7.5, 12
Ex 7.5, 13 Important
Ex 7.5, 14 Important
Ex 7.5, 15
Ex 7.5, 16 Important
Ex 7.5, 17
Ex 7.5, 18 Important You are here
Ex 7.5, 19
Ex 7.5, 20 Important
Ex 7.5, 21 Important
Ex 7.5, 22 (MCQ)
Ex 7.5, 23 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 7.5, 18 Integrate the function (𝑥2+ 1)(𝑥2+ 2)/(𝑥2+ 3)(𝑥2+ 4) (𝑥^2 + 1)(𝑥^2 + 2)/(𝑥^2 + 3)(𝑥^2 + 4) " " Let t = 𝑥^2 = (𝑡 + 1)(𝑡 + 2)/(𝑡 + 3)(𝑡 + 4) = (𝑡^2 + 3𝑡 + 2)/(𝑡^2 + 7𝑡 + 12) = 1 + (−4𝑡 −10)/(𝑡^2 + 7𝑡 + 12) = 1 + (−(4𝑡 + 10))/(𝑡 + 3)(𝑡 + 4) Rough = 1 − ( (4𝑡 + 10))/(𝑡 + 3)(𝑡 + 4) We can write (4𝑡 + 10)/((𝑡 + 3) (𝑡 + 4) ) = 𝐴/((𝑡 + 3) ) + 𝐵/((𝑡 + 4) ) (4𝑡 + 10)/((𝑡 + 3) (𝑡 + 4) ) = (𝐴(𝑡 + 4) + 𝐵(𝑡 + 3))/((𝑡 + 3) (𝑡 + 4) ) Cancelling denominator 4𝑡−10 = 𝐴(𝑡+4)+𝐵(𝑡+3) Putting t = − 4 in (1) 4(−4)+10 = 𝐴(−4+4)+𝐵(−4+3) −16+10 = 𝐴×0+𝐵(−1) …(1) −6 = 𝐴×0+𝐵(−1) −6 = −𝐵 𝐵 = 6 Putting t = −3 in (1) 4𝑡−10 = 𝐴(𝑡+4)+𝐵(𝑡+3) 4(−3)+10 = 𝐴(−3+4)+𝐵(−3+3) −12+10 = 𝐴×1+𝐵×0 −2 = 𝐴 𝐴 = −2 Hence we can write (4𝑡 + 10)/((𝑡 + 3) (𝑡 + 4) ) = (−2)/((𝑡 + 3) ) + 6/((𝑡 + 4) ) Putting back t = 𝑥^2 (4𝑥^2 − 10)/((𝑥^2 + 3) (𝑥^2 + 4) ) = (−2)/((𝑥^2 + 3) ) + 6/((𝑥^2 + 4) ) Therefore ∫1▒(𝑥2+ 1)(𝑥2+ 2)/(𝑥2+ 3)(𝑥2+ 4) = ∫1▒〖1−[(−2)/((𝑥^2 + 3) ) + 6/((𝑥^2 + 4) )] 〗 𝑑𝑥 = ∫1▒1. 𝑑𝑥 + ∫1▒2/((𝑥^2 + 3) ) 𝑑𝑥 − ∫1▒6/((𝑥^2 + 4) ) 𝑑𝑥 = ∫1▒1. 𝑑𝑥 + 2∫1▒1/(𝑥^2 + (√3)^2 ) 𝑑𝑥 − 6∫1▒1/((𝑥^2 +2^2 ) ) 𝑑𝑥 = 𝑥 + 2 × 1/√3 tan^(−1)〖 𝑥/√3〗 − 6 × 1/2 tan^(−1)〖 𝑥/2〗+𝐶 = 𝒙 + 𝟐/√𝟑 〖𝒕𝒂𝒏〗^(−𝟏)(𝒙/√𝟑)−𝟑 〖𝒕𝒂𝒏〗^(−𝟏)(𝒙/𝟐)+𝑪