Integration Full Chapter Explained - Integration Class 12 - Everything you need







Last updated at Dec. 20, 2019 by Teachoo
Transcript
Ex 7.5, 9 Integrate the function (3π₯ + 5)/(π₯^3 β π₯^2 β π₯ + 1) Let I=β«1β(3π₯ + 5)/(π₯^3 β π₯^2 β π₯ + 1) ππ₯ We can write integrand as (3π₯ + 5)/(π₯^3 β π₯^2 β π₯ + 1)=(3π₯ + 5)/(π₯ β 1)(π₯^2 β 1) =(3π₯ + 5)/(π₯ β 1)(π₯^2 β 1^2 ) =(3π₯ + 5)/((π₯ β 1) (π₯ β 1) (π₯ + 1) ) =(3π₯ + 5)/γ(π₯ + 1) (π₯ β 1)γ^2 Rough π₯^3βπ₯^2βπ₯+1 Put π₯=1 1^3β1^2β1+1 =1β1β1+1 =0 So, π₯β1 is a factor of π₯^3βπ₯^2βπ₯+1 We can write it as (3π₯ + 5)/γ(π₯ + 1) (π₯ β 1)γ^2 =π΄/((π₯ + 1) ) + π΅/((π₯ β 1) ) + πΆ/(π₯ β 1)^2 (3π₯ + 5)/γ(π₯ + 1) (π₯ β 1)γ^2 =(π΄(π₯ β 1)^2 + π΅(π₯ + 1)(π₯ β 1) + πΆ(π₯ + 1))/(π₯ + 1)(π₯ β 1)(π₯ β 1) (3π₯ + 5)/γ(π₯ + 1) (π₯ β 1)γ^2 =(π΄(π₯ β 1)^2 + π΅(π₯^2 β 1) + πΆ(π₯ + 1))/((π₯ + 1) (π₯ β 1)^2 ) By Cancelling denominator 3π₯+5=π΄(π₯β1)^2+π΅(π₯^2β1)+πΆ(π₯+1) Put π₯=1 in (1) 3Γ1+5=π΄(1β1)^2+π΅(1^2β1)+πΆ(1+1) 8=π΄Γ0+ π΅Γ0+πΆΓ2 β¦(1) 8=2πΆ πΆ=4 Putting π₯=β1 in (1) 3π₯+5=π΄(π₯β1)^2+π΅(π₯^2β1)+πΆ(π₯+1) 3(β1)+5=π΄(β1β1)^2+π΅((β1)^2β1)+πΆ(β1+1) β3+5=π΄(β2)^2+π΅(1β1)+πΆ(0) 2=4π΄+π΅Γ0+πΆΓ0 2=4π΄ π΄=1/2 Putting x = 0 in (1) 3π₯+5=π΄(π₯β1)^2+π΅(π₯^2β1)+πΆ(π₯+1) 3(0)+5=π΄(0β1)^2+π΅(0β1)+πΆ(0+1) 5=π΄βπ΅+πΆ 5= 1/2 βπ΅+4 5= βπ΅+9/2 π΅=9/2 β5 π΅=(β1)/2 Hence, we can our equation as write (3π₯ + 5)/γ(π₯ + 1) (π₯ β 1)γ^2 =π΄/((π₯ + 1) ) + π΅/((π₯ β 1) ) + πΆ/(π₯ β 1)^2 (3π₯ + 5)/γ(π₯ + 1) (π₯ β 1)γ^2 =((1/2))/((π₯ + 1) ) + (β 1/2)/((π₯ β 1) ) + 4/(π₯ β 1)^2 (3π₯ + 5)/γ(π₯ + 1) (π₯ β 1)γ^2 =1/2(π₯ + 1) β 1/2(π₯ β 1) + 4/(π₯ β 1)^2 Integrating π€.π.π‘.π₯ I=β«1β(3π₯ + 5)/(π₯^3 β π₯^2 β π₯ + 1) ππ₯ =β«1β(1/2(π₯ + 1) β 1/2(π₯ β 1) + 4/(π₯ β 1)^2 ) ππ₯ =1/2 β«1βππ₯/(π₯ + 1) β 1/2 β«1βππ₯/((π₯ β 1) )+4β«1βππ₯/(π₯ β 1)^2 Hence I=I1βI2+I3 Now, I1=1/2 β«1β1/(π₯ + 1) ππ₯ =1/2 logβ‘|π₯+1|+πΆ1 Also, I2 =1/2 β«1β1/(π₯ β 1) ππ₯ = 1/2 logβ‘|π₯β1|+πΆ2 And, I3=β«1β4/(π₯ β 1)^2 ππ₯ =4β«1β1/(π₯ β 1)^2 ππ₯ =4β«1β(π₯ β 1)^(β2) ππ₯ =(4(π₯ β 1)^(β2 + 1))/(β2 + 1) +πΆ3 =(4(π₯ β 1)^(β1))/(β1) +πΆ3 =(β 4)/(π₯ β 1)+πΆ3 Therefore I=I1βI2+I3 I=1/2 logβ‘|π₯+1|+πΆ1β 1/2 logβ‘|π₯β1|βπΆ2+(β 4)/(π₯ β 1)+πΆ3 =1/2 logβ‘|π₯+1|+β 1/2 logβ‘|π₯β1|β4/(π₯ β 1) +πΆ1βπΆ2+πΆ3 =1/2 [logβ‘|π₯+1|βlogβ‘|π₯β1| ]β4/(π₯ β 1) +πΆ =π/π πππβ‘|(π + π)/(π β π)|β π/(π β π) +πͺ
Ex 7.5
Ex 7.5, 2
Ex 7.5, 3
Ex 7.5, 4
Ex 7.5, 5
Ex 7.5, 6 Important
Ex 7.5, 7
Ex 7.5, 8
Ex 7.5, 9 Important You are here
Ex 7.5, 10
Ex 7.5, 11 Important
Ex 7.5, 12
Ex 7.5, 13
Ex 7.5, 14
Ex 7.5, 15
Ex 7.5, 16
Ex 7.5, 17
Ex 7.5, 18 Important
Ex 7.5, 19
Ex 7.5, 20 Important
Ex 7.5, 21 Important
Ex 7.5, 22
Ex 7.5, 23 Important
About the Author