






Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 7.5
Ex 7.5, 2
Ex 7.5, 3 Important
Ex 7.5, 4
Ex 7.5, 5
Ex 7.5, 6 Important
Ex 7.5, 7 Important
Ex 7.5, 8
Ex 7.5, 9 Important You are here
Ex 7.5, 10
Ex 7.5, 11 Important
Ex 7.5, 12
Ex 7.5, 13 Important
Ex 7.5, 14 Important
Ex 7.5, 15
Ex 7.5, 16 Important
Ex 7.5, 17
Ex 7.5, 18 Important
Ex 7.5, 19
Ex 7.5, 20 Important
Ex 7.5, 21 Important
Ex 7.5, 22 (MCQ)
Ex 7.5, 23 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 7.5, 9 Integrate the function (3𝑥 + 5)/(𝑥^3 − 𝑥^2 − 𝑥 + 1) Let I=∫1▒(3𝑥 + 5)/(𝑥^3 − 𝑥^2 − 𝑥 + 1) 𝑑𝑥 We can write integrand as (3𝑥 + 5)/(𝑥^3 − 𝑥^2 − 𝑥 + 1)=(3𝑥 + 5)/(𝑥 − 1)(𝑥^2 − 1) =(3𝑥 + 5)/(𝑥 − 1)(𝑥^2 − 1^2 ) =(3𝑥 + 5)/((𝑥 − 1) (𝑥 − 1) (𝑥 + 1) ) =(3𝑥 + 5)/〖(𝑥 + 1) (𝑥 − 1)〗^2 Rough 𝑥^3−𝑥^2−𝑥+1 Put 𝑥=1 1^3−1^2−1+1 =1−1−1+1 =0 So, 𝑥−1 is a factor of 𝑥^3−𝑥^2−𝑥+1 We can write it as (3𝑥 + 5)/〖(𝑥 + 1) (𝑥 − 1)〗^2 =𝐴/((𝑥 + 1) ) + 𝐵/((𝑥 − 1) ) + 𝐶/(𝑥 − 1)^2 (3𝑥 + 5)/〖(𝑥 + 1) (𝑥 − 1)〗^2 =(𝐴(𝑥 − 1)^2 + 𝐵(𝑥 + 1)(𝑥 − 1) + 𝐶(𝑥 + 1))/(𝑥 + 1)(𝑥 − 1)(𝑥 − 1) (3𝑥 + 5)/〖(𝑥 + 1) (𝑥 − 1)〗^2 =(𝐴(𝑥 − 1)^2 + 𝐵(𝑥^2 − 1) + 𝐶(𝑥 + 1))/((𝑥 + 1) (𝑥 − 1)^2 ) By Cancelling denominator 3𝑥+5=𝐴(𝑥−1)^2+𝐵(𝑥^2−1)+𝐶(𝑥+1) Put 𝑥=1 in (1) 3×1+5=𝐴(1−1)^2+𝐵(1^2−1)+𝐶(1+1) 8=𝐴×0+ 𝐵×0+𝐶×2 …(1) 8=2𝐶 𝐶=4 Putting 𝑥=−1 in (1) 3𝑥+5=𝐴(𝑥−1)^2+𝐵(𝑥^2−1)+𝐶(𝑥+1) 3(−1)+5=𝐴(−1−1)^2+𝐵((−1)^2−1)+𝐶(−1+1) −3+5=𝐴(−2)^2+𝐵(1−1)+𝐶(0) 2=4𝐴+𝐵×0+𝐶×0 2=4𝐴 𝐴=1/2 Putting x = 0 in (1) 3𝑥+5=𝐴(𝑥−1)^2+𝐵(𝑥^2−1)+𝐶(𝑥+1) 3(0)+5=𝐴(0−1)^2+𝐵(0−1)+𝐶(0+1) 5=𝐴−𝐵+𝐶 5= 1/2 −𝐵+4 5= −𝐵+9/2 𝐵=9/2 −5 𝐵=(−1)/2 Hence, we can our equation as write (3𝑥 + 5)/〖(𝑥 + 1) (𝑥 − 1)〗^2 =𝐴/((𝑥 + 1) ) + 𝐵/((𝑥 − 1) ) + 𝐶/(𝑥 − 1)^2 (3𝑥 + 5)/〖(𝑥 + 1) (𝑥 − 1)〗^2 =((1/2))/((𝑥 + 1) ) + (− 1/2)/((𝑥 − 1) ) + 4/(𝑥 − 1)^2 (3𝑥 + 5)/〖(𝑥 + 1) (𝑥 − 1)〗^2 =1/2(𝑥 + 1) − 1/2(𝑥 − 1) + 4/(𝑥 − 1)^2 Integrating 𝑤.𝑟.𝑡.𝑥 I=∫1▒(3𝑥 + 5)/(𝑥^3 − 𝑥^2 − 𝑥 + 1) 𝑑𝑥 =∫1▒(1/2(𝑥 + 1) − 1/2(𝑥 − 1) + 4/(𝑥 − 1)^2 ) 𝑑𝑥 =1/2 ∫1▒𝑑𝑥/(𝑥 + 1) − 1/2 ∫1▒𝑑𝑥/((𝑥 − 1) )+4∫1▒𝑑𝑥/(𝑥 − 1)^2 Hence I=I1−I2+I3 Now, I1=1/2 ∫1▒1/(𝑥 + 1) 𝑑𝑥 =1/2 log|𝑥+1|+𝐶1 Also, I2 =1/2 ∫1▒1/(𝑥 − 1) 𝑑𝑥 = 1/2 log|𝑥−1|+𝐶2 And, I3=∫1▒4/(𝑥 − 1)^2 𝑑𝑥 =4∫1▒1/(𝑥 − 1)^2 𝑑𝑥 =4∫1▒(𝑥 − 1)^(−2) 𝑑𝑥 =(4(𝑥 − 1)^(−2 + 1))/(−2 + 1) +𝐶3 =(4(𝑥 − 1)^(−1))/(−1) +𝐶3 =(− 4)/(𝑥 − 1)+𝐶3 Therefore I=I1−I2+I3 I=1/2 log|𝑥+1|+𝐶1− 1/2 log|𝑥−1|−𝐶2+(− 4)/(𝑥 − 1)+𝐶3 =1/2 log|𝑥+1|+− 1/2 log|𝑥−1|−4/(𝑥 − 1) +𝐶1−𝐶2+𝐶3 =1/2 [log|𝑥+1|−log|𝑥−1| ]−4/(𝑥 − 1) +𝐶 =𝟏/𝟐 𝒍𝒐𝒈|(𝒙 + 𝟏)/(𝒙 − 𝟏)|− 𝟒/(𝒙 − 𝟏) +𝑪