Ex 7.5, 20 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.5
Ex 7.5, 2
Ex 7.5, 3 Important
Ex 7.5, 4
Ex 7.5, 5
Ex 7.5, 6 Important
Ex 7.5, 7 Important
Ex 7.5, 8
Ex 7.5, 9 Important
Ex 7.5, 10
Ex 7.5, 11 Important
Ex 7.5, 12
Ex 7.5, 13 Important
Ex 7.5, 14 Important
Ex 7.5, 15
Ex 7.5, 16 Important
Ex 7.5, 17
Ex 7.5, 18 Important
Ex 7.5, 19
Ex 7.5, 20 Important You are here
Ex 7.5, 21 Important
Ex 7.5, 22 (MCQ)
Ex 7.5, 23 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
You saved atleast 2 minutes by viewing the ad-free version of this page. Thank you for being a part of Teachoo Black.
Ex 7.5, 20 Integrate the function 1/(๐ฅ(๐ฅ4โ1) ) 1/(๐ฅ(๐ฅ4 โ 1) ) Multiplying integrand by ๐ฅ^3/๐ฅ^3 = 1/(๐ฅ(๐ฅ^4 โ 1) ) ร ๐ฅ^3/๐ฅ^3 = ๐ฅ^3/(๐ฅ^4 (๐ฅ^4 โ 1) ) Let t = ๐ฅ^4 Differentiating both sides ๐ค.๐.๐ก.๐ฅ ๐๐ก/๐๐ฅ = 4๐ฅ^3 ๐๐ก/(4๐ฅ^3 ) = ๐๐ฅ Substituting value of ๐ก = ๐ฅ^4 & ๐๐ฅ = ๐๐ก/(4๐ฅ^3 ) " " โซ1โ๐ฅ^3/(๐ฅ^4 (๐ฅ^4โ 1) ) ๐๐ฅ = โซ1โ๐ฅ^3/(๐ก(๐ก โ 1) ) ๐๐ก/(4๐ฅ^3 ) " " = 1/4 โซ1โ๐๐ก/(๐ก(๐ก โ 1) ) We can write integrand as 1/(๐ก(๐ก โ 1) ) = ๐ด/๐ก + ๐ต/(๐ก โ 1) 1/(๐ก(๐ก โ 1) ) = (๐ด(๐ก โ 1) + ๐ต ๐ก)/๐ก(๐ก โ 1) Cancelling denominator 1 = ๐ด(๐กโ1)+๐ต๐ก โฆ(1) Putting t = 0 in (1) 1 = ๐ด(0โ1)+๐ตร0 1 = ๐ดร(โ1) 1 = โ๐ด ๐ด = โ1 Putting t = 1 in (1) 1 = A(tโ1)+Bt 1 = ๐ด(1โ1)+๐ตร1 1 = ๐ดร0+๐ต 1 = ๐ต ๐ต = 1 Therefore 1/4 โซ1โ1/(๐ก(๐ก โ 1) ) ๐๐ก = โซ1โ(โ1)/(๐ก ) ๐๐ก + โซ1โ1/(๐ก โ 1 ) = โใlog ใโก|๐ก|+ใlog ใโก|๐กโ1|+๐ถ = ใlog ใโก|(๐ก โ 1)/๐ก|+๐ถ Putting back t =ใ ๐ฅใ^4 = ๐/๐ ใ๐ฅ๐จ๐ ใโก|(๐^๐ โ ๐)/๐^๐ |+๐ช ("As " ๐๐๐ ๐ดโ๐๐๐ ๐ต" = " ๐๐๐ ๐ด/๐ต)