Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

Ex 7.5

Ex 7.5, 1

Ex 7.5, 2

Ex 7.5, 3 Important

Ex 7.5, 4

Ex 7.5, 5

Ex 7.5, 6 Important

Ex 7.5, 7 Important

Ex 7.5, 8

Ex 7.5, 9 Important

Ex 7.5, 10

Ex 7.5, 11 Important

Ex 7.5, 12

Ex 7.5, 13 Important

Ex 7.5, 14 Important

Ex 7.5, 15

Ex 7.5, 16 Important

Ex 7.5, 17

Ex 7.5, 18 Important

Ex 7.5, 19

Ex 7.5, 20 Important You are here

Ex 7.5, 21 Important

Ex 7.5, 22 (MCQ)

Ex 7.5, 23 (MCQ) Important

Last updated at May 29, 2023 by Teachoo

Ex 7.5, 20 Integrate the function 1/(𝑥(𝑥4−1) ) 1/(𝑥(𝑥4 − 1) ) Multiplying integrand by 𝑥^3/𝑥^3 = 1/(𝑥(𝑥^4 − 1) ) × 𝑥^3/𝑥^3 = 𝑥^3/(𝑥^4 (𝑥^4 − 1) ) Let t = 𝑥^4 Differentiating both sides 𝑤.𝑟.𝑡.𝑥 𝑑𝑡/𝑑𝑥 = 4𝑥^3 𝑑𝑡/(4𝑥^3 ) = 𝑑𝑥 Substituting value of 𝑡 = 𝑥^4 & 𝑑𝑥 = 𝑑𝑡/(4𝑥^3 ) " " ∫1▒𝑥^3/(𝑥^4 (𝑥^4− 1) ) 𝑑𝑥 = ∫1▒𝑥^3/(𝑡(𝑡 − 1) ) 𝑑𝑡/(4𝑥^3 ) " " = 1/4 ∫1▒𝑑𝑡/(𝑡(𝑡 − 1) ) We can write integrand as 1/(𝑡(𝑡 − 1) ) = 𝐴/𝑡 + 𝐵/(𝑡 − 1) 1/(𝑡(𝑡 − 1) ) = (𝐴(𝑡 − 1) + 𝐵 𝑡)/𝑡(𝑡 − 1) Cancelling denominator 1 = 𝐴(𝑡−1)+𝐵𝑡 …(1) Putting t = 0 in (1) 1 = 𝐴(0−1)+𝐵×0 1 = 𝐴×(−1) 1 = −𝐴 𝐴 = −1 Putting t = 1 in (1) 1 = A(t−1)+Bt 1 = 𝐴(1−1)+𝐵×1 1 = 𝐴×0+𝐵 1 = 𝐵 𝐵 = 1 Therefore 1/4 ∫1▒1/(𝑡(𝑡 − 1) ) 𝑑𝑡 = ∫1▒(−1)/(𝑡 ) 𝑑𝑡 + ∫1▒1/(𝑡 − 1 ) = −〖log 〗|𝑡|+〖log 〗|𝑡−1|+𝐶 = 〖log 〗|(𝑡 − 1)/𝑡|+𝐶 Putting back t =〖 𝑥〗^4 = 𝟏/𝟒 〖𝐥𝐨𝐠 〗|(𝒙^𝟒 − 𝟏)/𝒙^𝟒 |+𝑪 ("As " 𝑙𝑜𝑔 𝐴−𝑙𝑜𝑔 𝐵" = " 𝑙𝑜𝑔 𝐴/𝐵)