


Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 7.5
Ex 7.5, 2
Ex 7.5, 3 Important
Ex 7.5, 4
Ex 7.5, 5
Ex 7.5, 6 Important
Ex 7.5, 7 Important
Ex 7.5, 8
Ex 7.5, 9 Important
Ex 7.5, 10
Ex 7.5, 11 Important
Ex 7.5, 12
Ex 7.5, 13 Important
Ex 7.5, 14 Important
Ex 7.5, 15
Ex 7.5, 16 Important
Ex 7.5, 17
Ex 7.5, 18 Important
Ex 7.5, 19
Ex 7.5, 20 Important You are here
Ex 7.5, 21 Important
Ex 7.5, 22 (MCQ)
Ex 7.5, 23 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 7.5, 20 Integrate the function 1/(𝑥(𝑥4−1) ) 1/(𝑥(𝑥4 − 1) ) Multiplying integrand by 𝑥^3/𝑥^3 = 1/(𝑥(𝑥^4 − 1) ) × 𝑥^3/𝑥^3 = 𝑥^3/(𝑥^4 (𝑥^4 − 1) ) Let t = 𝑥^4 Differentiating both sides 𝑤.𝑟.𝑡.𝑥 𝑑𝑡/𝑑𝑥 = 4𝑥^3 𝑑𝑡/(4𝑥^3 ) = 𝑑𝑥 Substituting value of 𝑡 = 𝑥^4 & 𝑑𝑥 = 𝑑𝑡/(4𝑥^3 ) " " ∫1▒𝑥^3/(𝑥^4 (𝑥^4− 1) ) 𝑑𝑥 = ∫1▒𝑥^3/(𝑡(𝑡 − 1) ) 𝑑𝑡/(4𝑥^3 ) " " = 1/4 ∫1▒𝑑𝑡/(𝑡(𝑡 − 1) ) We can write integrand as 1/(𝑡(𝑡 − 1) ) = 𝐴/𝑡 + 𝐵/(𝑡 − 1) 1/(𝑡(𝑡 − 1) ) = (𝐴(𝑡 − 1) + 𝐵 𝑡)/𝑡(𝑡 − 1) Cancelling denominator 1 = 𝐴(𝑡−1)+𝐵𝑡 …(1) Putting t = 0 in (1) 1 = 𝐴(0−1)+𝐵×0 1 = 𝐴×(−1) 1 = −𝐴 𝐴 = −1 Putting t = 1 in (1) 1 = A(t−1)+Bt 1 = 𝐴(1−1)+𝐵×1 1 = 𝐴×0+𝐵 1 = 𝐵 𝐵 = 1 Therefore 1/4 ∫1▒1/(𝑡(𝑡 − 1) ) 𝑑𝑡 = ∫1▒(−1)/(𝑡 ) 𝑑𝑡 + ∫1▒1/(𝑡 − 1 ) = −〖log 〗|𝑡|+〖log 〗|𝑡−1|+𝐶 = 〖log 〗|(𝑡 − 1)/𝑡|+𝐶 Putting back t =〖 𝑥〗^4 = 𝟏/𝟒 〖𝐥𝐨𝐠 〗|(𝒙^𝟒 − 𝟏)/𝒙^𝟒 |+𝑪 ("As " 𝑙𝑜𝑔 𝐴−𝑙𝑜𝑔 𝐵" = " 𝑙𝑜𝑔 𝐴/𝐵)