Ex 7.5, 15 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.5
Ex 7.5, 2
Ex 7.5, 3 Important
Ex 7.5, 4
Ex 7.5, 5
Ex 7.5, 6 Important
Ex 7.5, 7 Important
Ex 7.5, 8
Ex 7.5, 9 Important
Ex 7.5, 10
Ex 7.5, 11 Important
Ex 7.5, 12
Ex 7.5, 13 Important
Ex 7.5, 14 Important
Ex 7.5, 15 You are here
Ex 7.5, 16 Important
Ex 7.5, 17
Ex 7.5, 18 Important
Ex 7.5, 19
Ex 7.5, 20 Important
Ex 7.5, 21 Important
Ex 7.5, 22 (MCQ)
Ex 7.5, 23 (MCQ) Important
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.5, 15 1 4 1 Now, 1 4 1 = 1 2 + 1 2 1 = 1 2 + 1 1 + 1 Hence we can write this as 1 2 + 1 1 + 1 = + 2 + 1 + 1 + + 1 1 2 + 1 1 + 1 = + 1 + 1 + 2 + 1 + 1 + 2 + 1 1 2 + 1 1 + 1 By cancelling denominator 1= + 1 +1 + 2 +1 +1 + 2 +1 1 Putting x = 1 1= + 1 +1 + 2 +1 +1 + 2 +1 1 1= 1 + 1 1 1+1 + 1 2 +1 1+1 + 1 2 +1 1 1 1= + 0 2+ 2 2 + 2 0 1=0+ 4+0 1=4 = 1 4 Similarly putting x = 1, in (1) 1= 1 + 1 1 1+1 + 1 2 +1 1+1 + 1 2 +1 1 1 1= + 2 0 + 1+1 0 + 1+1 2 1=0+0+ 2 2 1= 4 = 1 4 Putting x = 0 , in (1) 1= + 1 +1 + 2 +1 +1 + 2 +1 1 1= 0+ 0 1 0+1 + 0+1 0+1 + 0+1 0 1 1= 1 1 + 1 1 + 1 1 1= + 1= + 1 4 1 4 1= + 1 2 = 1 2 1 = 1 2 Putting = 2 in (1). 1= (A +B) ( 1) + C ( 2 +1) ( +1) + D ( 2 +1) ( 1) 1 = (2A + B) (2 1) (2 + 1) + C ( 2 2 +1) (2 +1) D ( 2 2 +1) (2 1) 1 = (2A + B) (1) (3) + C (5) (3) + D (5) (1) 1 = 6A + 3B + 15C +5D 1 = 6A 3 2 + 15 4 5 4 1 = 6A 3 2 + 10 4 1 = 6A + 1 6A = 1 1 6A = 0 A = 0 Therefore we can write 1 2 + 1 1 + 1 = + 2 + 1 + 1 + + 1 1 4 1 = 0 + 1 2 2 + 1 + 1 4 1 + 1 4 + 1 = 1 2 2 + 1 + 1 4 1 1 4 + 1 Integrating . . . . 1 4 1 = 1 2 2 + 1 + 1 4 1 1 4 + 1 = 1 2 1 2 + 1 + 1 4 1 1 1 4 1 + 1 = 1 2 tan 1 + 1 4 log 1 1 4 log +1 + C = 1 2 tan 1 + 1 4 log 1 log +1]+ C = + + + C