# Ex 7.5, 6 - Chapter 7 Class 12 Integrals (Term 2)

Last updated at Dec. 20, 2019 by Teachoo

Ex 7.5

Ex 7.5, 1

Ex 7.5, 2

Ex 7.5, 3 Important

Ex 7.5, 4

Ex 7.5, 5

Ex 7.5, 6 Important You are here

Ex 7.5, 7 Important

Ex 7.5, 8

Ex 7.5, 9 Important

Ex 7.5, 10

Ex 7.5, 11 Important

Ex 7.5, 12

Ex 7.5, 13 Important

Ex 7.5, 14 Important

Ex 7.5, 15

Ex 7.5, 16 Important

Ex 7.5, 17

Ex 7.5, 18 Important

Ex 7.5, 19

Ex 7.5, 20 Important

Ex 7.5, 21 Important

Ex 7.5, 22 (MCQ)

Ex 7.5, 23 (MCQ) Important

Chapter 7 Class 12 Integrals

Serial order wise

Last updated at Dec. 20, 2019 by Teachoo

Ex 7.5, 6 Integrate the function (1 − 𝑥2)/(𝑥(1 − 2𝑥)) ∫1▒(1 − 𝑥2)/(𝑥(1 − 2𝑥)) 𝑑𝑥= ∫1▒(1 − 𝑥^2)/(𝑥 − 2𝑥^2 ) 𝑑𝑥 =∫1▒(1/2 + (− 𝑥/2 + 1)/(−2𝑥^2+ 𝑥)) 𝑑𝑥 =1/2 ∫1▒𝑑𝑥+1/2 ∫1▒(−𝑥 + 2)/(−2𝑥^2+ 𝑥) 𝑑𝑥 =1/2 ∫1▒𝑑𝑥−1/2 ∫1▒(𝑥 − 2)/𝑥(1 − 2𝑥) 𝑑𝑥 =1/2 ∫1▒𝑑𝑥−1/2 ∫1▒(𝑥 − 2)/𝑥(2𝑥 − 1) 𝑑𝑥 −2𝑥^2+𝑥 −𝑥^2+𝑥/2 Now Solving (𝑥 − 2)/(𝑥 (2𝑥 − 1) ) = 𝐴/𝑥 + 𝐵/(2𝑥 − 1) (𝑥 − 2)/(𝑥 (2𝑥 − 1) ) = (𝐴(2𝑥 − 1) + 𝐵𝑥)/(𝑥 (2𝑥 − 1) ) Cancelling denominator 𝑥−2=𝐴(2𝑥−1)+𝐵𝑥 Putting x = 0 in (2) 𝑥−2=𝐴(2𝑥−1)+𝐵𝑥 0−2 = 𝐴(2×0−1) + 𝐵×0 −2 = A(−1) …(2) −2 = −𝐴 𝐴 = 2 Similarly Putting x = 1/2 in (2) 𝑥−2=𝐴(2𝑥−1)+𝐵𝑥 1/2 − 2 = A(1/2×2−1)+𝐵×1/2 (−3)/2 = A(1−1)+𝐵×1/2 (−3)/2 = A×0+ 𝐵/2 (−3)/2 = 𝐵/2 𝐵 = −3 Hence we can write it as (𝑥 − 2)/(𝑥 (2𝑥 − 1) ) = 𝐴/𝑥 + 𝐵/(2𝑥 − 1) (𝑥 − 2)/(𝑥 (2𝑥 − 1) ) = 2/𝑥 + ((−3))/(2𝑥 − 1) = 2/𝑥 − 3/(2𝑥 − 1) Therefore , from (1) we get, ∫1▒(1 − 𝑥^2)/𝑥(1 − 2𝑥) =1/2 ∫1▒𝑑𝑥+ 1/2 ∫1▒(2/𝑥 − 3/(2𝑥 − 1)) 𝑑𝑥 =1/2 ∫1▒𝑑𝑥+ 2/2 ∫1▒〖𝑑𝑥/𝑥 −3/2〗 ∫1▒𝑑𝑥/(2𝑥 − 1) =1/2 ∫1▒𝑑𝑥+∫1▒〖𝑑𝑥/𝑥 + 3/2〗 ∫1▒𝑑𝑥/(1 − 2𝑥) =1/2 𝑥+log|𝑥|+3/2 log|1 − 2𝑥|/(−2) +𝐶 =𝒙/𝟐 +𝒍𝒐𝒈|𝒙|−𝟑/𝟒 𝒍𝒐𝒈|𝟏−𝟐𝒙|+𝑪