# Ex 7.5, 22 (MCQ) - Chapter 7 Class 12 Integrals

Last updated at April 16, 2024 by Teachoo

Ex 7.5

Ex 7.5, 1

Ex 7.5, 2

Ex 7.5, 3 Important

Ex 7.5, 4

Ex 7.5, 5

Ex 7.5, 6 Important

Ex 7.5, 7 Important

Ex 7.5, 8

Ex 7.5, 9 Important

Ex 7.5, 10

Ex 7.5, 11 Important

Ex 7.5, 12

Ex 7.5, 13 Important

Ex 7.5, 14 Important

Ex 7.5, 15

Ex 7.5, 16 Important

Ex 7.5, 17

Ex 7.5, 18 Important

Ex 7.5, 19

Ex 7.5, 20 Important

Ex 7.5, 21 Important

Ex 7.5, 22 (MCQ) You are here

Ex 7.5, 23 (MCQ) Important

Last updated at April 16, 2024 by Teachoo

Ex 7.5, 22 𝑥𝑑𝑥(𝑥−1)(𝑥−2) equals • log 𝑥−12𝑥−2 + C • log 𝑥−22𝑥−1 + C • log 𝑥−12𝑥−2 + C • log 𝑥−1 𝑥−2 + C We can write integrand as 𝑥 𝑥 − 1 𝑥 − 2 = 𝐴 𝑥 − 1 + 𝐵 𝑥 − 2 𝑥 𝑥 − 1 𝑥 − 2 = 𝐴 𝑥 − 2 + 𝐵 𝑥 − 1 𝑥 − 1 𝑥 − 2 By cancelling denominator 𝑥 = 𝐴 𝑥 − 2 + 𝐵 𝑥 − 1 Putting x = 1 in (1) 1 = 𝐴 1−2+𝐵 1−1 1 = 𝐴× −1+𝐵×0 1 = −𝐴 𝐴 = − 1 Similarly putting x = 2 in (1) 𝑥 = 𝐴 𝑥 − 2 + 𝐵 𝑥 − 1 2 = 𝐴 2−2+𝐵 2−1 2 = 𝐴×0+𝐵×1 2 = 𝐵 𝐵 = 2 Therefore 𝑥 𝑑𝑥 𝑥 − 1 𝑥 − 2 𝑑𝑡 = −1 𝑥 − 1 𝑑𝑥 + 2 𝑥 − 2 = − log 𝑥−1+2 log 𝑥−2+𝐶 = − log 𝑥−1+ log 𝑥−22+𝐶 = log 𝑥 − 22𝑥 − 1+𝐶 ∴ The correct answer is B.