Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

Ex 5.1

Ex 5.1 ,1

Ex 5.1 ,2

Ex 5.1, 3 (a)

Ex 5.1, 3 (b)

Ex 5.1, 3 (c) Important

Ex 5.1, 3 (d) Important

Ex 5.1 ,4

Ex 5.1 ,5 Important

Ex 5.1 ,6

Ex 5.1 ,7 Important

Ex 5.1 ,8

Ex 5.1, 9 Important

Ex 5.1, 10

Ex 5.1, 11

Ex 5.1, 12 Important

Ex 5.1, 13

Ex 5.1, 14

Ex 5.1, 15 Important

Ex 5.1, 16

Ex 5.1, 17 Important

Ex 5.1, 18 Important

Ex 5.1, 19 Important

Ex 5.1, 20

Ex 5.1, 21

Ex 5.1, 22 (i) Important

Ex 5.1, 22 (ii)

Ex 5.1, 22 (iii)

Ex 5.1, 22 (iv) Important

Ex 5.1, 23

Ex 5.1, 24 Important

Ex 5.1, 25

Ex 5.1, 26 Important

Ex 5.1, 27

Ex 5.1, 28 Important

Ex 5.1, 29

Ex 5.1, 30 Important

Ex 5.1, 31

Ex 5.1, 32

Ex 5.1, 33 You are here

Ex 5.1, 34 Important

Last updated at May 29, 2023 by Teachoo

Ex 5.1, 33 Examine that sinβ‘| π₯ | is a continuous function.π(π₯) = γsin γβ‘|π₯| Let π(π) = sinβ‘π₯ & π(π) = |π₯| Now, πππ (π) = g(β(π₯)) = π(|π₯|) = γsin γβ‘|π₯| = π(π) Hence, π(π₯) = ππβ (π₯) We know that π(π) = sinβ‘π₯ is continuous as sin x is always continuous & π(π) = |π₯| is continuous as modulus function is continuous Hence, π(π₯) & β(π₯) are both continuous . We know that If two function of π(π₯) & β(π₯) both continuous, then their composition πππ(π) is also continuous Hence, π(π) is continuous . Given π(π₯)= |π₯| β |π₯+1|. Here, we have 2 critical points x = 0 and x + 1 = 0 i.e. x = 0, and x = β1 So, our intervals will be When πβ€βπ When βπ<π<π When πβ₯π When πβ€βπ π(π₯)= |π₯| β |π₯+1|. Here, both will be negative π(π₯)=(βπ₯) β(β(π₯+1)) π(π₯)=βπ₯+(π₯+1) " " π(π)=π When βπ<πβ€π π(π₯)= |π₯| β |π₯+1|. Here, x will be negative, but (x + 1) will be positive π(π₯)=(βπ₯) β(π₯+1) π(π₯)=βπ₯βπ₯β1 " " π(π)=βππβπ |π₯| = {β(π₯, π₯ β₯0@βπ₯, π₯<0)β€ |π₯+1| = {β((π₯+1) , π₯+1β₯0@β(π₯+1) π₯+1<0)β€ = {β((π₯+1) , π₯β₯β1@β(π₯+1) π₯<1)β€ When πβ₯π π(π₯)= |π₯| β |π₯+1|. Here, both will be positive π(π₯)=π₯ β(π₯+1) π(π₯)=π₯βπ₯β1 " " π(π)=βπ Thus, our function becomes π(π)={β(π ππ πβ€βπ@βππβπ ππ βπ<π<π@βπ ππ πβ₯π)β€ Since we need to find continuity at of the function We check continuity for different values of x When x < β1 When x = β1 When β1 < x < 0 When x = 0 When x > 0 Checking continuity Case 1 : When x < β1 For x < β1, f(x) = 1 Since this constant It is continuous β΄ f(x) is continuous for x < β1 Case 2 : When x = β1 f(x) is continuous at π₯ =β1 if L.H.L = R.H.L = π(β1) if limβ¬(xβγβ1γ^β ) π(π₯)=limβ¬(xβγβ1γ^+ ) " " π(π₯)= π(β1) Since there are two different functions on the left & right of β1, we take LHL & RHL . LHL at x β β1 limβ¬(xβγβ1γ^β ) f(x) = limβ¬(hβ0) f(β1 β h) = limβ¬(hβ0) 1 = 1 RHL at x β 0 limβ¬(xβγβ1γ^+ ) f(x) = limβ¬(hβ0) f(β1 + h) = limβ¬(hβ0) (β2(β1+β))β1 = limβ¬(hβ0) (2β2β)β1 = (2 β 2(0)) β 1 = 2 β 0 β 1 = 1 & π(0) = β1 Hence, L.H.L = R.H.L = π(0) β΄ f is continuous at x = 0 Case 5: When x > 0 For x > 0, f(x) = β1 Since this constant It is continuous β΄ f(x) is continuous for x > 0 Since there is no point of discontinuity Therefore, f is continuous for all x β R