Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

Ex 5.1

Ex 5.1 ,1

Ex 5.1 ,2

Ex 5.1, 3 (a)

Ex 5.1, 3 (b)

Ex 5.1, 3 (c) Important

Ex 5.1, 3 (d) Important

Ex 5.1 ,4

Ex 5.1 ,5 Important

Ex 5.1 ,6

Ex 5.1 ,7 Important

Ex 5.1 ,8

Ex 5.1, 9 Important

Ex 5.1, 10

Ex 5.1, 11

Ex 5.1, 12 Important

Ex 5.1, 13

Ex 5.1, 14

Ex 5.1, 15 Important

Ex 5.1, 16

Ex 5.1, 17 Important

Ex 5.1, 18 Important

Ex 5.1, 19 Important

Ex 5.1, 20

Ex 5.1, 21

Ex 5.1, 22 (i) Important

Ex 5.1, 22 (ii)

Ex 5.1, 22 (iii)

Ex 5.1, 22 (iv) Important

Ex 5.1, 23

Ex 5.1, 24 Important

Ex 5.1, 25

Ex 5.1, 26 Important

Ex 5.1, 27

Ex 5.1, 28 Important

Ex 5.1, 29

Ex 5.1, 30 Important You are here

Ex 5.1, 31

Ex 5.1, 32

Ex 5.1, 33

Ex 5.1, 34 Important

Last updated at May 29, 2023 by Teachoo

Ex 5.1, 30 Find the values of a and b such that the function defined by 𝑓(𝑥)={█(5, 𝑖𝑓 𝑥≤2@𝑎𝑥+𝑏, 𝑖𝑓 2<𝑥<10@21, 𝑖𝑓 𝑥≥10)┤ is a continuous function Since f(x) is a continuous function, It will be continuous for all values of x At x = 2 A function is continuous at x = 2 if L.H.L = R.H.L = 𝑓(2) i.e. lim┬(x→2^− ) 𝑓(𝑥)=lim┬(x→2^+ ) " " 𝑓(𝑥)= 𝑓(2) LHL at x → 2 (𝑙𝑖𝑚)┬(𝑥→2^− ) f(x) = (𝑙𝑖𝑚)┬(ℎ→0) f(2 − h) = lim┬(h→0) 5 = 5 RHL at x → 2 (𝑙𝑖𝑚)┬(𝑥→2^+ ) f(x) = (𝑙𝑖𝑚)┬(ℎ→0) f(2 + h) = lim┬(h→0) a(2 + h) + b = a(2 + 0) + b = 2a + b Since, LHL = RHL 2a + b = 5 At x = 10 𝑓 is continuous at x = 10 if L.H.L = R.H.L = 𝑓(10) i.e. lim┬(x→10^− ) 𝑓(𝑥)=lim┬(x→10^+ ) " " 𝑓(𝑥)= 𝑓(10) LHL at x → 10 (𝑙𝑖𝑚)┬(𝑥→10^− ) f(x) = (𝑙𝑖𝑚)┬(ℎ→0) f(10 − h) = lim┬(h→0) a(10 − h) + b = a(10 − 0) + b = 10a + b RHL at x → 10 (𝑙𝑖𝑚)┬(𝑥→10^+ ) f(x) = (𝑙𝑖𝑚)┬(ℎ→0) f(10 + h) = lim┬(h→0) 21 = 21 Since, L.H.L = R.H.L 10a + b = 21 Now, our equations are 2a + b = 5 …(1) 10a + b = 21 …(2) From (1) 2a + b = 5 b = 5 − 2a Putting value of b in (2) 10𝑎+(5−2𝑎) = 21 10𝑎+5−2𝑎 = 21 8𝑎 = 21−5 8𝑎 = 16 𝑎 = 16/8 𝒂 = 𝟐 Putting value of a in (1) 2𝑎+𝑏=5 2(2)+𝑏=5 4+𝑏=5 𝑏=5−4 𝒃=𝟏 Hence, a = 2 & b = 1