Last updated at March 10, 2021 by Teachoo

Transcript

Ex 5.1, 11 Find all points of discontinuity of f, where f is defined by π(π₯)={ β(π₯3β3, ππ π₯β€2@&π₯2+1 , ππ π₯>2)β€ Since we need to find continuity at of the function We check continuity for different values of x When x = 2 When x < 2 When x > 2 Case 1 : When x = 2 f(x) is continuous at π₯ =2 if L.H.L = R.H.L = π(2) if limβ¬(xβ2^β ) π(π₯)=limβ¬(xβ2^+ ) " " π(π₯)= π(2) Since there are two different functions on the left & right of 2, we take LHL & RHL . LHL at x β 2 limβ¬(xβ2^β ) f(x) = limβ¬(hβ0) f(2 β h) = limβ¬(hβ0) ((2ββ)^3β3) = (2β0)^3β3 = 2^3β3 = 8 β 3 = 5 RHL at x β 2 limβ¬(xβ2^+ ) f(x) = limβ¬(hβ0) f(2 + h) = limβ¬(hβ0) (2+β)^2+1 = (2 + 0)2 + 1 = 22 + 1 = 4 + 1 = 5 & π(2) = π₯^3β3 = 2^3β3 = 8 β 3 = 5 Hence, L.H.L = R.H.L = π(2) β΄ f is continuous at x = 2 Case 2: When x < 2 For x < 2, f(x) = π₯^3β3 Since this a polynomial It is continuous β΄ f(x) is continuous for x < 2 Case 3 : When x > 2 For x > 2, f(x) = x2 + 1 Since this a polynomial It is continuous β΄ f(x) is continuous for x > 2 Hence, there is no point of discontinuity Thus, f is continuous for all πβπ

Ex 5.1

Ex 5.1 ,1

Ex 5.1 ,2

Ex 5.1 ,3 Important

Ex 5.1 ,4

Ex 5.1 ,5 Important

Ex 5.1 ,6

Ex 5.1 ,7 Important

Ex 5.1 ,8

Ex 5.1, 9 Important

Ex 5.1, 10

Ex 5.1, 11 You are here

Ex 5.1, 12

Ex 5.1, 13

Ex 5.1, 14

Ex 5.1, 15 Important

Ex 5.1, 16

Ex 5.1, 17 Important

Ex 5.1, 18 Important

Ex 5.1, 19 Important

Ex 5.1, 20

Ex 5.1, 21

Ex 5.1, 22 (i) Important

Ex 5.1, 22 (ii)

Ex 5.1, 22 (iii)

Ex 5.1, 22 (iv)

Ex 5.1, 23

Ex 5.1, 24 Important

Ex 5.1, 25

Ex 5.1, 26 Important

Ex 5.1, 27

Ex 5.1, 28 Important

Ex 5.1, 29

Ex 5.1, 30 Important

Ex 5.1, 31

Ex 5.1, 32

Ex 5.1, 33

Ex 5.1, 34 Important

Chapter 5 Class 12 Continuity and Differentiability

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.