



Get live Maths 1-on-1 Classs - Class 6 to 12
Ex 5.1
Ex 5.1 ,2
Ex 5.1, 3 (a)
Ex 5.1, 3 (b)
Ex 5.1, 3 (c) Important
Ex 5.1, 3 (d) Important
Ex 5.1 ,4
Ex 5.1 ,5 Important
Ex 5.1 ,6
Ex 5.1 ,7 Important
Ex 5.1 ,8 You are here
Ex 5.1, 9 Important
Ex 5.1, 10
Ex 5.1, 11
Ex 5.1, 12 Important
Ex 5.1, 13
Ex 5.1, 14
Ex 5.1, 15 Important
Ex 5.1, 16
Ex 5.1, 17 Important
Ex 5.1, 18 Important
Ex 5.1, 19 Important
Ex 5.1, 20
Ex 5.1, 21
Ex 5.1, 22 (i) Important
Ex 5.1, 22 (ii)
Ex 5.1, 22 (iii)
Ex 5.1, 22 (iv) Important
Ex 5.1, 23
Ex 5.1, 24 Important
Ex 5.1, 25
Ex 5.1, 26 Important
Ex 5.1, 27
Ex 5.1, 28 Important
Ex 5.1, 29
Ex 5.1, 30 Important
Ex 5.1, 31
Ex 5.1, 32
Ex 5.1, 33
Ex 5.1, 34 Important
Last updated at March 16, 2023 by Teachoo
Ex 5.1, 8 Find all points of discontinuity of f, where f is defined by 𝑓(𝑥)={█(|𝑥|/𝑥, 𝑖𝑓 𝑥≠[email protected]&0 , 𝑖𝑓 𝑥=0)┤ Since we need to find continuity at of the function We check continuity for different values of x When x = 0 When x > 0 When x < 0 Case 1 : When x = 0 f(x) is continuous at 𝑥 =0 if L.H.L = R.H.L = 𝑓(0) Since there are two different functions on the left & right of 0, we take LHL & RHL . if lim┬(x→0^− ) 𝑓(𝑥)=lim┬(x→0^+ ) " " 𝑓(𝑥)= 𝑓(0) Since L.H.L ≠ R.H.L f(x) is not continuous at x=0 LHL at x → 0 lim┬(x→0^− ) f(x) = lim┬(h→0) f(0 − h) = lim┬(h→0) f(−h) = lim┬(h→0) (|−ℎ|)/(−ℎ) = lim┬(h→0) ℎ/(−ℎ) = lim┬(h→0) −1 = −1 RHL at x → 0 lim┬(x→0^+ ) f(x) = lim┬(h→0) f(0 + h) = lim┬(h→0) f(h) = lim┬(h→0) (|ℎ|)/ℎ = lim┬(h→0) ℎ/ℎ = lim┬(h→0) 1 = 1 Case 2 : When x < 0 For x < 0, f(x) = (|𝑥|)/𝑥 f(x) = ((−𝑥))/𝑥 f(x) = −1 Since this constant It is continuous ∴ f(x) is continuous for x < 0 (As x < 0, x is negative) Case 3 : When x > 0 For x > 0, f(x) = (|𝑥|)/𝑥 f(x) = 𝑥/𝑥 f(x) = 1 Since this constant It is continuous ∴ f(x) is continuous for x > 0 Hence, only x = 0is point is discontinuity. ∴ f is continuous for all real numbers except 0. Thus, f is continuous for 𝒙 ∈ R − {0} (As x > 0, x is positive)