Ex 5.1
Ex 5.1 ,2 You are here
Ex 5.1, 3 (a)
Ex 5.1, 3 (b)
Ex 5.1, 3 (c) Important
Ex 5.1, 3 (d) Important
Ex 5.1 ,4
Ex 5.1 ,5 Important
Ex 5.1 ,6
Ex 5.1 ,7 Important
Ex 5.1 ,8
Ex 5.1, 9 Important
Ex 5.1, 10
Ex 5.1, 11
Ex 5.1, 12 Important
Ex 5.1, 13
Ex 5.1, 14
Ex 5.1, 15 Important
Ex 5.1, 16
Ex 5.1, 17 Important
Ex 5.1, 18 Important
Ex 5.1, 19 Important
Ex 5.1, 20
Ex 5.1, 21
Ex 5.1, 22 (i) Important
Ex 5.1, 22 (ii)
Ex 5.1, 22 (iii)
Ex 5.1, 22 (iv) Important
Ex 5.1, 23
Ex 5.1, 24 Important
Ex 5.1, 25
Ex 5.1, 26 Important
Ex 5.1, 27
Ex 5.1, 28 Important
Ex 5.1, 29
Ex 5.1, 30 Important
Ex 5.1, 31
Ex 5.1, 32
Ex 5.1, 33
Ex 5.1, 34 Important
Last updated at March 10, 2021 by Teachoo
Ex 5.1, 2 Examine the continuity of the function f (x) = 2x2 β 1 at x = 3. π(π₯) is continuous at x = 3 if limβ¬(xβ3) π(π₯) = π(3) Since, L.H.S = R.H.S Hence, f is continuous at π =3 (π₯π’π¦)β¬(π±βπ) π(π) "= " limβ¬(xβ3) " "(2π₯2β1) Putting π₯ = 3 = 2(3)2 β 1 = 2 Γ 9 β 1 = 17 π(π) = 2(3)2 β 1 = 2 Γ 9 β 1 = 18β1 = 17