Check Full Chapter Explained - Continuity and Differentiability - Continuity and Differentiability Class 12
Last updated at March 10, 2021 by Teachoo
Check Full Chapter Explained - Continuity and Differentiability - Continuity and Differentiability Class 12
Transcript
Ex 5.1, 2 Examine the continuity of the function f (x) = 2x2 β 1 at x = 3. π(π₯) is continuous at x = 3 if limβ¬(xβ3) π(π₯) = π(3) Since, L.H.S = R.H.S Hence, f is continuous at π =3 (π₯π’π¦)β¬(π±βπ) π(π) "= " limβ¬(xβ3) " "(2π₯2β1) Putting π₯ = 3 = 2(3)2 β 1 = 2 Γ 9 β 1 = 17 π(π) = 2(3)2 β 1 = 2 Γ 9 β 1 = 18β1 = 17
Ex 5.1
Ex 5.1 ,2 You are here
Ex 5.1 ,3 Important
Ex 5.1 ,4
Ex 5.1 ,5 Important
Ex 5.1 ,6
Ex 5.1 ,7 Important
Ex 5.1 ,8
Ex 5.1, 9 Important
Ex 5.1, 10
Ex 5.1, 11
Ex 5.1, 12
Ex 5.1, 13
Ex 5.1, 14
Ex 5.1, 15 Important
Ex 5.1, 16
Ex 5.1, 17 Important
Ex 5.1, 18 Important
Ex 5.1, 19 Important
Ex 5.1, 20
Ex 5.1, 21
Ex 5.1, 22
Ex 5.1, 23
Ex 5.1, 24 Important
Ex 5.1, 25
Ex 5.1, 26 Important
Ex 5.1, 27
Ex 5.1, 28 Important
Ex 5.1, 29
Ex 5.1, 30 Important
Ex 5.1, 31
Ex 5.1, 32
Ex 5.1, 33
Ex 5.1, 34 Important
About the Author