Check Full Chapter Explained - Continuity and Differentiability - Continuity and Differentiability Class 12

Last updated at March 10, 2021 by Teachoo

Check Full Chapter Explained - Continuity and Differentiability - Continuity and Differentiability Class 12

Transcript

Ex 5.1, 2 Examine the continuity of the function f (x) = 2x2 β 1 at x = 3. π(π₯) is continuous at x = 3 if limβ¬(xβ3) π(π₯) = π(3) Since, L.H.S = R.H.S Hence, f is continuous at π =3 (π₯π’π¦)β¬(π±βπ) π(π) "= " limβ¬(xβ3) " "(2π₯2β1) Putting π₯ = 3 = 2(3)2 β 1 = 2 Γ 9 β 1 = 17 π(π) = 2(3)2 β 1 = 2 Γ 9 β 1 = 18β1 = 17

Ex 5.1

Ex 5.1 ,1

Ex 5.1 ,2 You are here

Ex 5.1 ,3 Important

Ex 5.1 ,4

Ex 5.1 ,5 Important

Ex 5.1 ,6

Ex 5.1 ,7 Important

Ex 5.1 ,8

Ex 5.1, 9 Important

Ex 5.1, 10

Ex 5.1, 11

Ex 5.1, 12

Ex 5.1, 13

Ex 5.1, 14

Ex 5.1, 15 Important

Ex 5.1, 16

Ex 5.1, 17 Important

Ex 5.1, 18 Important

Ex 5.1, 19 Important

Ex 5.1, 20

Ex 5.1, 21

Ex 5.1, 22

Ex 5.1, 23

Ex 5.1, 24 Important

Ex 5.1, 25

Ex 5.1, 26 Important

Ex 5.1, 27

Ex 5.1, 28 Important

Ex 5.1, 29

Ex 5.1, 30 Important

Ex 5.1, 31

Ex 5.1, 32

Ex 5.1, 33

Ex 5.1, 34 Important

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.